File: t_Uniform_std.expout

package info (click to toggle)
openturns 1.26-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 67,708 kB
  • sloc: cpp: 261,605; python: 67,030; ansic: 4,378; javascript: 406; sh: 185; xml: 164; makefile: 101
file content (38 lines) | stat: -rw-r--r-- 1,852 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
Distribution  class=Uniform name=Uniform dimension=1 a=-0.5 b=1.5
Distribution  Uniform(a = -0.5, b = 1.5)
Mean=  class=Point name=Unnamed dimension=1 values=[0.5]
Covariance=  class=CovarianceMatrix dimension=1 implementation=class=MatrixImplementation name=Unnamed rows=1 columns=1 values=[0.333333]
Elliptical =  True
oneRealization= class=Point name=Unnamed dimension=1 values=[0.759753]
Point=  class=Point name=Unnamed dimension=1 values=[1]
ddf     = class=Point name=Unnamed dimension=1 values=[0]
log pdf=-0.693147
pdf     =0.500000
cdf=0.750000
ccdf=0.250000
characteristic function= (0.738460262604+0.403422680111j)
pdf gradient     = class=Point name=Unnamed dimension=2 values=[0.25,-0.25]
cdf gradient     = class=Point name=Unnamed dimension=2 values=[-0.125,-0.375]
quantile= class=Point name=Unnamed dimension=1 values=[1.4]
cdf(quantile)=0.950000
InverseSurvival= class=Point name=Unnamed dimension=1 values=[-0.4]
Survival(inverseSurvival)=0.950000
entropy=0.693147
Minimum volume interval= [-0.45, 1.45]
threshold= 0.95
Minimum volume level set= {x | f(x) <= 0.95} with f=
[x]->[1 * abs(x - (0.5))]
beta= 0.95
Bilateral confidence interval= [-0.45, 1.45]
beta= 0.95
Unilateral confidence interval (lower tail)= [-0.5, 1.4]
beta= 0.95
Unilateral confidence interval (upper tail)= [-0.4, 1.5]
beta= 0.95
mean= class=Point name=Unnamed dimension=1 values=[0.5]
standard deviation= class=Point name=Unnamed dimension=1 values=[0.57735]
skewness= class=Point name=Unnamed dimension=1 values=[0]
kurtosis= class=Point name=Unnamed dimension=1 values=[1.8]
covariance= class=CovarianceMatrix dimension=1 implementation=class=MatrixImplementation name=Unnamed rows=1 columns=1 values=[0.333333]
parameters= [class=PointWithDescription name=X0 dimension=2 description=[a,b] values=[-0.5,1.5]]
Standard representative= Uniform(a = -1, b = 1)