File: t_WeibullMax_std.expout

package info (click to toggle)
openturns 1.26-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 67,708 kB
  • sloc: cpp: 261,605; python: 67,030; ansic: 4,378; javascript: 406; sh: 185; xml: 164; makefile: 101
file content (35 lines) | stat: -rw-r--r-- 1,854 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
Distribution  class=WeibullMax name=WeibullMax dimension=1 beta=2 alpha=1.5 gamma=-0.5
Distribution  WeibullMax(beta = 2, alpha = 1.5, gamma = -0.5)
Elliptical =  False
Continuous =  True
oneRealization= class=Point name=Unnamed dimension=1 values=[-2.49188]
Point=  class=Point name=Unnamed dimension=1 values=[-1]
ddf     = class=Point name=Unnamed dimension=1 values=[-0.206835]
log pdf=-1.105829
pdf     =0.330936
cdf=0.882497
pdf gradient     = class=Point name=Unnamed dimension=3 values=[-0.217177,-0.180804,0.206835]
cdf gradient     = class=Point name=Unnamed dimension=3 values=[0.0827341,0.152925,-0.330936]
quantile= class=Point name=Unnamed dimension=1 values=[-0.776103]
cdf(quantile)=0.950000
InverseSurvival= class=Point name=Unnamed dimension=1 values=[-4.65622]
Survival(inverseSurvival)=0.950000
entropy=1.480087
Minimum volume interval= [-4.66304, -0.510263]
threshold= [0.95]
Minimum volume level set= {x | f(x) <= 2.92424} with f=
MinimumVolumeLevelSetEvaluation(WeibullMax(beta = 2, alpha = 1.5, gamma = -0.5))
beta= [0.0537054]
Bilateral confidence interval= [-5.27485, -0.672444]
beta= [0.95]
Unilateral confidence interval (lower tail)= [-20.7578, -0.776103]
beta= [0.95]
Unilateral confidence interval (upper tail)= [-4.65622, -0.5]
beta= [0.95]
mean= class=Point name=Unnamed dimension=1 values=[-2.30549]
standard deviation= class=Point name=Unnamed dimension=1 values=[1.22587]
skewness= class=Point name=Unnamed dimension=1 values=[-1.07199]
kurtosis= class=Point name=Unnamed dimension=1 values=[4.3904]
covariance= class=CovarianceMatrix dimension=1 implementation=class=MatrixImplementation name=Unnamed rows=1 columns=1 values=[1.50276]
parameters= [class=PointWithDescription name=X0 dimension=3 description=[beta,alpha,gamma] values=[2,1.5,-0.5]]
Standard representative= WeibullMax(beta = 1, alpha = 1.5, gamma = 0)