File: t_Wishart_std.expout

package info (click to toggle)
openturns 1.26-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 67,708 kB
  • sloc: cpp: 261,605; python: 67,030; ansic: 4,378; javascript: 406; sh: 185; xml: 164; makefile: 101
file content (40 lines) | stat: -rw-r--r-- 2,023 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
Distribution  class=Wishart name=Wishart dimension=1 cholesky=class=TriangularMatrix dimension=1 implementation=class=MatrixImplementation name=Unnamed rows=1 columns=1 values=[1] nu=3
Distribution  Wishart(V = 
[[ 1 ]], nu = 3)
Mean=  class=Point name=Unnamed dimension=1 values=[3]
Covariance=  class=CovarianceMatrix dimension=1 implementation=class=MatrixImplementation name=Unnamed rows=1 columns=1 values=[6]
Elliptical =  False
oneRealization= class=Point name=Unnamed dimension=1 values=[3.90923]
Point=  class=Point name=Unnamed dimension=1 values=[9.1]
ddf     = class=Point name=Unnamed dimension=1 values=[-0.00565984]
log pdf=-4.364801
pdf     =0.012717
cdf=0.972010
ccdf=0.027990
pdf gradient     = class=Point name=Unnamed dimension=2 values=[0.0387874,0.00940205]
cdf gradient     = class=Point name=Unnamed dimension=2 values=[-0.115726,-0.0234707]
quantile= class=Point name=Unnamed dimension=1 values=[7.81473]
cdf(quantile)=0.950000
InverseSurvival= class=Point name=Unnamed dimension=1 values=[0.351846]
Survival(inverseSurvival)=0.950000
entropy=2.054120
Minimum volume interval= [0.00315933, 7.81683]
threshold= [0.95]
Minimum volume level set= {x | f(x) <= 3.79922} with f=
MinimumVolumeLevelSetEvaluation(Wishart(V = 
[[ 1 ]], nu = 3))
beta= [0.0223883]
Bilateral confidence interval= [0.215795, 9.3484]
beta= [0.95]
Unilateral confidence interval (lower tail)= [0, 7.81473]
beta= [0.95]
Unilateral confidence interval (upper tail)= [0.351846, 59.8961]
beta= [0.95]
mean= class=Point name=Unnamed dimension=1 values=[3]
standard deviation= class=Point name=Unnamed dimension=1 values=[2.44949]
skewness= class=Point name=Unnamed dimension=1 values=[1.63299]
kurtosis= class=Point name=Unnamed dimension=1 values=[7]
covariance= class=CovarianceMatrix dimension=1 implementation=class=MatrixImplementation name=Unnamed rows=1 columns=1 values=[6]
parameters= [class=PointWithDescription name=X0 dimension=2 description=[V_0_0,nu] values=[1,3]]
Standard representative= Wishart(V = 
[[ 1 ]], nu = 3)