File: ValidPoisson.mws

package info (click to toggle)
openturns 1.26-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 67,708 kB
  • sloc: cpp: 261,605; python: 67,030; ansic: 4,378; javascript: 406; sh: 185; xml: 164; makefile: 101
file content (231 lines) | stat: -rw-r--r-- 16,177 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
{VERSION 6 0 "IBM INTEL LINUX" "6.0" }
{USTYLETAB {CSTYLE "Maple Input" -1 0 "Courier" 0 1 255 0 0 1 0 1 0 0 
1 0 0 0 0 1 }{CSTYLE "2D Math" -1 2 "Times" 0 1 0 0 0 0 0 0 2 0 0 0 0 
0 0 1 }{CSTYLE "2D Output" 2 20 "" 0 1 0 0 255 1 0 0 0 0 0 0 0 0 0 1 }
{PSTYLE "Normal" -1 0 1 {CSTYLE "" -1 -1 "" 0 1 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "Maple Output" 0 11 1 
{CSTYLE "" -1 -1 "" 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 }3 3 0 -1 -1 -1 0 
0 0 0 0 0 -1 0 }{PSTYLE "" 11 12 1 {CSTYLE "" -1 -1 "" 0 1 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 }1 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "Maple Plo
t" 0 13 1 {CSTYLE "" -1 -1 "" 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 }3 0 0 
-1 -1 -1 0 0 0 0 0 0 -1 0 }}
{SECT 0 {EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 815 "restart:\nwith(Stat
istics):\npoisson_:=RandomVariable(Poisson(lambda)):\npdf:=subs(u=n,Pr
obabilityFunction(poisson_,u));\ncdf:=simplify(subs(u=n,CDF(poisson_,u
)));\nmu_:=Mean(poisson_);\nvar_:=Variance(poisson_);\nskew_:=simplify
(convert(Skewness(poisson_),GAMMA),symbolic);\nkurt_:=simplify(convert
(Kurtosis(poisson_),GAMMA),symbolic);\nqdf:=simplify(Quantile(poisson_
,q));\nqdf2:=solve(cdf=q,K);\npdfgr:=[factor(diff(pdf, lambda))];\ncdf
gr:=[diff(cdf, lambda)];\nvalnum:=lambda=10:\nevalf(subs(valnum,n=12,p
df));\nevalf(subs(valnum,n=12,cdf));\nevalf(subs(valnum,n=12,pdfgr));
\nevalf(subs(valnum,n=12,cdfgr));\nq:=evalf(Quantile(Poisson(subs(valn
um,lambda)),0.95));\nevalf(subs(valnum,n=q,cdf));\nevalf(subs(valnum,m
u_));\nevalf(subs(valnum,sqrt(var_)));\nevalf(subs(valnum,skew_));\nev
alf(subs(valnum,kurt_));\nevalf(subs(valnum,var_));" }}{PARA 11 "" 1 "
" {XPPMATH 20 "6#>%$pdfG-%*PIECEWISEG6$7$\"\"!2%\"nGF)7$*()%'lambdaGF+
\"\"\"-%$expG6#,$F/!\"\"F0-%*factorialG6#F+F5%*otherwiseG" }}{PARA 11 
"" 1 "" {XPPMATH 20 "6#>%$cdfG*&-%&GAMMAG6$,&-%&floorG6#%\"nG\"\"\"F.F
.%'lambdaGF.-F'6#F)!\"\"" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%$mu_G%'l
ambdaG" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%%var_G%'lambdaG" }}{PARA 
11 "" 1 "" {XPPMATH 20 "6#>%&skew_G*&\"\"\"F&*$%'lambdaG#F&\"\"#!\"\"
" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%&kurt_G*&%'lambdaG!\"\",&*&\"\"$
\"\"\"F&F+F+F+F+F+" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%$qdfG-%'RootOf
G6#,&-%&floorG6#%#_ZG\"\"\"-F&6#,(*&-%&GAMMAG6$,&F,F-F-F-%'lambdaGF-F,
F-F-F2F-*&%\"qGF--F36#,&\"\"#F-F,F-F-!\"\"F=" }}{PARA 11 "" 1 "" 
{XPPMATH 20 "6#>%%qdf2G6\"" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%&pdfgr
G7#-%*PIECEWISEG6$7$\"\"!2%\"nGF*7$*,)%'lambdaGF,\"\"\"-%$expG6#,$F0!
\"\"F1,&F,F1F0F6F1F0F6-%*factorialG6#F,F6%*otherwiseG" }}{PARA 11 "" 
1 "" {XPPMATH 20 "6#>%&cdfgrG7#,$*()%'lambdaG-%&floorG6#%\"nG\"\"\"-%$
expG6#,$F)!\"\"F.-%&GAMMAG6#,&F*F.F.F.F3F3" }}{PARA 11 "" 1 "" 
{XPPMATH 20 "6#$\"+4I.y%*!#6" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#$\"+kZ
c:z!#5" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#7#$\"+-mg&*=!#6" }}{PARA 11 
"" 1 "" {XPPMATH 20 "6#7#$!+4I.y%*!#6" }}{PARA 11 "" 1 "" {XPPMATH 20 
"6#>%\"qG$\"#:\"\"!" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#$\"+off7&*!#5" 
}}{PARA 11 "" 1 "" {XPPMATH 20 "6#$\"#5\"\"!" }}{PARA 11 "" 1 "" 
{XPPMATH 20 "6#$\"+gwFiJ!\"*" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#$\"+gw
FiJ!#5" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#$\"+++++J!\"*" }}{PARA 11 "
" 1 "" {XPPMATH 20 "6#$\"#5\"\"!" }}}{EXCHG {PARA 0 "> " 0 "" 
{MPLTEXT 1 0 61 "fsolve(subs(lambda=0.2,GAMMA(n+1,lambda)/GAMMA(n+1))=
0.95,n);" }{TEXT -1 0 "" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#$\"+p-fad!#
5" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 111 "plot(map(_x->subs(lam
bda=30,_x),[GAMMA(floor(n)+1,lambda)/GAMMA(floor(n)+1),CDF(Gamma(1,lam
bda),n)]),n=0..100);" }}{PARA 13 "" 1 "" {GLPLOT2D 446 446 446 
{PLOTDATA 2 "6&-%'CURVESG6$7gn7$$\"\"!F)$\"+pHid$*!#B7$$\"+;arz@!\"*$
\"+[m,,X!#?7$$\"+XTFwSF0$\"+_4ICO!#=7$$\"+\"z_\"4iF0$\"++U>t6!#;7$$\"+
S&phN)F0$\"+/f2Y?!#:7$$\"+*=)H\\5!\")$\"+uv([B#!#97$$\"+[!3uC\"FI$\"+&
\\wpn\"!#87$$\"+J$RDX\"FI$\"+iR#o?*FR7$$\"+)R'ok;FI$\"+p[ssQ!#77$$\"+_
(>/x\"FI$\"+0i@qsFgn7$$\"+1J:w=FI$\"+x,F$H\"!#67$$\"+dG\"\\)>FI$\"+WoM
(=#Fbo7$$\"+3En$4#FI$\"+X=YGNFbo7$$\"+c#o%*=#FI$\"+>/MWaFbo7$$\"+/RE&G
#FI$\"+5@!p0)Fbo7$$\"+9r5$R#FI$\"+F\"fk9\"!#57$$\"+D.&4]#FI$\"+YOd$3#F
\\q7$$\"+]jB4EFI$\"+,gOtEF\\q7$$\"+vB_<FFI$\"+T3pGLF\\q7$$\"+Dg(=#GFI$
\"+'fC3.%F\\q7$$\"+v'Hi#HFI$\"+h)prv%F\\q7$$\"+'y#*4-$FI$\"+E^^$[&F\\q
7$$\"+(*ev:JFI$\"+**)Hk='F\\q7$$\"+-%Q%GKFI$\"+(\\7a%oF\\q7$$\"+347TLF
I$\"+(e([WuF\\q7$$\"+qxdOMFI$\"+bK3tzF\\q7$$\"+LY.KNFI$\"+b_;E%)F\\q7$
$\"+dO2VOFI$\"+!fLP!))F\\q7$$\"+\"o7Tv$FI$\"+x+()4\"*F\\q7$$\"+$Q*o]RF
I$\"+B'pu`*F\\q7$$\"+\"=lj;%FI$\"++'H*y(*F\\q7$$\"+V&R<P%FI$\"+V![E!**
F\\q7$$\"+Xh-'e%FI$\"+$RC/'**F\\q7$$\"+R\"3Gy%FI$\"+rp6&)**F\\q7$$\"+.
T1&*\\FI$\"+&36[***F\\q7$$\"+(RQb@&FI$\"+W(o!****F\\q7$$\"+=>Y2aFI$\"+
f(G(****F\\q7$$\"+yXu9cFI$\"+3i#*****F\\q7$$\"+\\y))GeFI$\"+87)*****F
\\q7$$\"+i_QQgFI$\"+=b******F\\q7$$\"+!y%3TiFI$\"+&**)******F\\q7$$\"+
O![hY'FI$\"+)y*******F\\q7$$\"+#Qx$omFI$\"+e********F\\q7$$\"+u.I%)oFI
$\"+\"*********F\\q7$$\"+(pe*zqFI$\"+++++5F07$$\"+C\\'QH(FIF\\z7$$\"+8
S8&\\(FIF\\z7$$\"+0#=bq(FI$\"+)*********F\\q7$$\"+2s?6zFI$\"+*********
*F\\q7$$\"+IXaE\")FIFgz7$$\"+l*RRL)FIF\\z7$$\"+`<.Y&)FIFgz7$$\"+8tOc()
FIF\\[l7$$\"+\\Qk\\*)FIF\\z7$$\"+p0;r\"*FIF\\z7$$\"+lxGp$*FIF\\[l7$$\"
+!oK0e*FIF\\z7$$\"+<5s#y*FIF\\z7$$\"$+\"F)F\\z-%'COLOURG6&%$RGBG$\"#5!
\"\"F(F(-F$6$7fn7$F(F(7$F.$\"+B!>b]'!#L7$F5$\"+P>v&\\\"!#D7$F;$\"+'Q=t
%e!#@7$FA$\"+J!4I_&F97$FG$\"+8C%Rk'F?7$FN$\"+\"R6!3=FL7$FT$\"+=72'\\#F
R7$FY$\"+!Q#=B?Fgn7$Fin$\"+o*eqw%Fgn7$F^o$\"+me&G,\"Fbo7$Fdo$\"+w\"=$*
*>Fbo7$Fio$\"+<pSBOFbo7$F^p$\"+^v[VdFbo7$Fcp$\"+dThL')Fbo7$Fhp$\"+Q`?!
H\"F\\q7$F^q$\"+K>AE=F\\q7$Fcq$\"+&GMaY#F\\q7$Fhq$\"+PF^'=$F\\q7$F]r$
\"+b8CLRF\\q7$Fbr$\"+$Gr>q%F\\q7$Fgr$\"+GAu%R&F\\q7$F\\s$\"+,A(=1'F\\q
7$Fas$\"+!3Z\"*z'F\\q7$Ffs$\"+[\\#pX(F\\q7$F[t$\"+p<ZVzF\\q7$F`t$\"+5p
!GO)F\\q7$Fjt$\"+f.h\"4*F\\q7$F_u$\"+m8j%\\*F\\q7$Fdu$\"+7+F^(*F\\q7$F
iu$\"+%4u1))*F\\q7$F^v$\"+\">Xw%**F\\q7$Fcv$\"+\\Iew**F\\q7$Fhv$\"+;!H
1***F\\q7$F]w$\"+dRb'***F\\q7$Fbw$\"+^6h)***F\\q7$Fgw$\"+`%)\\****F\\q
7$F\\x$\"+K9$)****F\\q7$Fax$\"+RR%*****F\\q7$Ffx$\"+q7)*****F\\q7$F[y$
\"+JY******F\\q7$F`y$\"+.$)******F\\q7$Fey$\"+?&*******F\\q7$Fjy$\"+/*
*******F\\q7$F_z$\"+f********F\\q7$Fbz$\"+.+++5F07$Fez$\"+/+++5F07$Fjz
$\"+V********F\\q7$F_[lF\\z7$Fb[l$\"+0+++5F07$Fe[lFifl7$Fh[lFifl7$F[\\
lFifl7$F^\\lFifl7$Fa\\lFifl7$Fd\\lFgz7$Fg\\lFiflFi\\l-F]]l6&F_]lF(F`]l
F(-%+AXESLABELSG6$Q\"n6\"Q!Fhgl-%%VIEWG6$;F(Fj\\l%(DEFAULTG" 1 2 0 1 
10 0 2 9 1 4 2 1.000000 45.000000 45.000000 0 0 "Curve 1" "Curve 2" }}
}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 161 "cdf:=convert(CDF(Gamma(1,
lambda),n),GAMMA);\ncdf2:=1-GAMMA(lambda,n)/GAMMA(lambda);\ncdf3:=GAMM
A(n,lambda)/GAMMA(n);\nevalf(subs(lambda=100,n=100,[cdf,cdf2,cdf3]));
" }}{PARA 12 "" 1 "" {XPPMATH 20 "6#>%$cdfG-%*PIECEWISEG6$7$\"\"!2%\"n
GF)7$*,-%$expG6#,$*&\"\"#!\"\"F+\"\"\"F4F5,(*&-F/6#,$*&F3F4F+F5F5F5,(-
%&GAMMAG6#,&F3F5%'lambdaGF5F4-F>6$,&F5F5FAF5F+F5*&FBF5FAF5F5F5F4*&)F+,
&*&F3F4FAF5F5F5F4F5-%+WhittakerMG6%,&*&F3F4FAF5F5F5F5,&*&F3F4FAF5F5#F5
F3F5F+F5F5*(FGF5FJF5FAF5F5F5-F>6#FAF4FAF4FDF41F)F+" }}{PARA 11 "" 1 "
" {XPPMATH 20 "6#>%%cdf2G,&\"\"\"F&*&-%&GAMMAG6$%'lambdaG%\"nGF&-F)6#F
+!\"\"F/" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%%cdf3G*&-%&GAMMAG6$%\"nG
%'lambdaG\"\"\"-F'6#F)!\"\"" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#7%$\"+&
)z)H8&!#5$\"+#)z)H8&F&$\"+=?,n[F&" }}}{EXCHG {PARA 0 "> " 0 "" 
{MPLTEXT 1 0 51 "with(plots):\nseries(diff(GAMMA(n,x)/GAMMA(n),x),n);
" }}{PARA 12 "" 1 "" {XPPMATH 20 "6#+/%\"nG,$*&%\"xG!\"\"-%$expG6#,$F'
F(\"\"\"F(F-,&*(F'F(-%#lnG6#F'F-F)F-F(*(F'F(F)F-%&gammaGF-F(\"\"#,(*&#
F-F5F-*(F'F(F0F5F)F-F-F(*(F'F(F)F-,&*&\"#7F(%#PiGF5F-*&F5F(F4F5F-F-F-*
*F)F-,&F0F-F4F-F-F'F(F4F-F(\"\"$,***F)F-FAF-F'F(F;F-F-*(F'F(F)F-,(*&#F
-FBF--%%ZetaG6#FBF-F(*(F=F(F>F5F4F-F(*&\"\"'F(F4FBF(F-F-*&#F-FNF-*(F'F
(F0FBF)F-F-F(*&#F-F=F-**F)F-,**&FNF-)F0F5F-F-*$)F>F5F-F(*&FNF-)F4F5F-F
-*(F=F-F4F-F0F-F-F-F'F(F4F-F-F(\"\"%,,**F)F-FAF-F'F(FFF-F-*(F'F(F)F-,*
*&\"$g\"F(F>FgnF-*&#F-FBF-*&FIF-F4F-F-F-*(\"#CF(F>F5F4F5F-*&FboF(F4Fgn
F-F-F-*&#F-FboF-*(F'F(F0FgnF)F-F-F(*&#F-F=F-**F)F-FUF-F'F(F;F-F-F-*&#F
-F=F-**F)F-,0*&F0F-FYF-F(*(FNF-F0F-FenF-F-*&FYF-F4F-F(*&F5F-)F4FBF-F-*
&FgnF-FIF-F-*&F5F-)F0FBF-F-*(FNF-F4F-FWF-F-F-F'F(F4F-F-F(\"\"&-%\"OG6#
F-FN" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 63 "plot(log(subs(n=2,G
AMMA(n+1,x)-x*GAMMA(n,x)))/x^(1/4),x=1..10);" }}{PARA 13 "" 1 "" 
{GLPLOT2D 772 772 772 {PLOTDATA 2 "6%-%'CURVESG6$7S7$$\"\"\"\"\"!$\"+6
*G7')*!#67$$\"+)Quh>\"!\"*$!+lo6sKF-7$$\"+tY'oO\"F1$!+er#RT\"!#57$$\"+
^P#)e:F1$!+//%**e#F97$$\"+f_0_<F1$!+'pU`t$F97$$\"+r$oV%>F1$!+$)HkW[F97
$$\"+VsmA@F1$!+_xT]eF97$$\"+)R&G2BF1$!+p@@soF97$$\"+ex@)\\#F1$!+xym5zF
97$$\"+'zP&)o#F1$!+K(o%H*)F97$$\"+[`I%)GF1$!+C5Di**F97$$\"+9vtcIF1$!+,
t.'3\"F17$$\"+#Hb3D$F1$!+12'f=\"F17$$\"+Q,xXMF1$!+K68&G\"F17$$\"+3ngLO
F1$!+'Ry'z8F17$$\"+3.=/QF1$!+mTsk9F17$$\"+=)3q+%F1$!+js!\\c\"F17$$\"+q
6$)yTF1$!+4t,\\;F17$$\"+89qyVF1$!+&GIgu\"F17$$\"+X/ibXF1$!+!o(>J=F17$$
\"+j'G(\\ZF1$!+PW\"R#>F17$$\"+*elX$\\F1$!+\"pG:,#F17$$\"+JNUF^F1$!+\\X
F-@F17$$\"+Et_/`F1$!+?)G]=#F17$$\"+%pdb\\&F1$!+sMptAF17$$\"+eX)Rp&F1$!
+`(f^O#F17$$\"+FdrmeF1$!+8kFWCF17$$\"+@,F`gF1$!+!o9#HDF17$$\"+l!**fC'F
1$!+niU;EF17$$\"+OnaMkF1$!+.RB,FF17$$\"+.j(ph'F1$!+bF#Gy#F17$$\"+MK`>o
F1$!+f<*G(GF17$$\"+X'R:+(F1$!+Q%oL&HF17$$\"+Q.(e>(F1$!+sN$)QIF17$$\"+G
G'>P(F1$!+7x(e6$F17$$\"+K%yWc(F1$!+LQo*>$F17$$\"+81iXxF1$!+X_9yKF17$$
\"+'Qm\\$zF1$!+lCwfLF17$$\"+)['3?\")F1$!+\"*\\<RMF17$$\"+y+*QJ)F1$!+=l
\">_$F17$$\"+qfa+&)F1$!+)fK7g$F17$$\"+z&G9p)F1$!+4V(>o$F17$$\"+$eI2)))
F1$!+ZfohPF17$$\"+l%zY0*F1$!+SAiMQF17$$\"+9X/a#*F1$!+&zdy\"RF17$$\"+!*
*eBV*F1$!+$z()>*RF17$$\"+8%zCi*F1$!+JKqqSF17$$\"+<*[W!)*F1$!+$RQd9%F17
$$\"#5F*$!+`v/EUF1-%'COLOURG6&%$RGBG$Fgz!\"\"$F*F*F`[l-%+AXESLABELSG6$
Q\"x6\"Q!Fe[l-%%VIEWG6$;F(Ffz%(DEFAULTG" 1 2 0 1 10 0 2 9 1 4 2 
1.000000 45.000000 45.000000 0 0 "Curve 1" }}}}{EXCHG {PARA 0 "> " 0 "
" {MPLTEXT 1 0 126 "for i from 0 to 99 do\n  level:=(0.5+i)/100.0;\n  \+
q:=evalf(Quantile(Poisson(subs(valnum,lambda)),level));\nprint([level,
q]);\nod:\n" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#7$$\"+++++]!#7$\"\"$\"
\"!" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#7$$\"+++++:!#6$\"\"%\"\"!" }}
{PARA 11 "" 1 "" {XPPMATH 20 "6#7$$\"+++++D!#6$\"\"%\"\"!" }}{PARA 11 
"" 1 "" {XPPMATH 20 "6#7$$\"+++++N!#6$\"\"&\"\"!" }}{PARA 11 "" 1 "" 
{XPPMATH 20 "6#7$$\"+++++X!#6$\"\"&\"\"!" }}{PARA 11 "" 1 "" {XPPMATH 
20 "6#7$$\"+++++b!#6$\"\"&\"\"!" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#7$$
\"+++++l!#6$\"\"&\"\"!" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#7$$\"+++++v!
#6$\"\"'\"\"!" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#7$$\"+++++&)!#6$\"\"'
\"\"!" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#7$$\"+++++&*!#6$\"\"'\"\"!" }
}{PARA 11 "" 1 "" {XPPMATH 20 "6#7$$\"++++]5!#5$\"\"'\"\"!" }}{PARA 
11 "" 1 "" {XPPMATH 20 "6#7$$\"++++]6!#5$\"\"'\"\"!" }}{PARA 11 "" 1 "
" {XPPMATH 20 "6#7$$\"++++]7!#5$\"\"'\"\"!" }}{PARA 11 "" 1 "" 
{XPPMATH 20 "6#7$$\"++++]8!#5$\"\"(\"\"!" }}{PARA 11 "" 1 "" {XPPMATH 
20 "6#7$$\"++++]9!#5$\"\"(\"\"!" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#7$$
\"++++]:!#5$\"\"(\"\"!" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#7$$\"++++];!
#5$\"\"(\"\"!" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#7$$\"++++]<!#5$\"\"(
\"\"!" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#7$$\"++++]=!#5$\"\"(\"\"!" }}
{PARA 11 "" 1 "" {XPPMATH 20 "6#7$$\"++++]>!#5$\"\"(\"\"!" }}{PARA 11 
"" 1 "" {XPPMATH 20 "6#7$$\"++++]?!#5$\"\"(\"\"!" }}{PARA 11 "" 1 "" 
{XPPMATH 20 "6#7$$\"++++]@!#5$\"\"(\"\"!" }}{PARA 11 "" 1 "" {XPPMATH 
20 "6#7$$\"++++]A!#5$\"\")\"\"!" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#7$$
\"++++]B!#5$\"\")\"\"!" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#7$$\"++++]C!
#5$\"\")\"\"!" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#7$$\"++++]D!#5$\"\")
\"\"!" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#7$$\"++++]E!#5$\"\")\"\"!" }}
{PARA 11 "" 1 "" {XPPMATH 20 "6#7$$\"++++]F!#5$\"\")\"\"!" }}{PARA 11 
"" 1 "" {XPPMATH 20 "6#7$$\"++++]G!#5$\"\")\"\"!" }}{PARA 11 "" 1 "" 
{XPPMATH 20 "6#7$$\"++++]H!#5$\"\")\"\"!" }}{PARA 11 "" 1 "" {XPPMATH 
20 "6#7$$\"++++]I!#5$\"\")\"\"!" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#7$$
\"++++]J!#5$\"\")\"\"!" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#7$$\"++++]K!
#5$\"\")\"\"!" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#7$$\"++++]L!#5$\"\"*
\"\"!" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#7$$\"++++]M!#5$\"\"*\"\"!" }}
{PARA 11 "" 1 "" {XPPMATH 20 "6#7$$\"++++]N!#5$\"\"*\"\"!" }}{PARA 11 
"" 1 "" {XPPMATH 20 "6#7$$\"++++]O!#5$\"\"*\"\"!" }}{PARA 11 "" 1 "" 
{XPPMATH 20 "6#7$$\"++++]P!#5$\"\"*\"\"!" }}{PARA 11 "" 1 "" {XPPMATH 
20 "6#7$$\"++++]Q!#5$\"\"*\"\"!" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#7$$
\"++++]R!#5$\"\"*\"\"!" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#7$$\"++++]S!
#5$\"\"*\"\"!" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#7$$\"++++]T!#5$\"\"*
\"\"!" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#7$$\"++++]U!#5$\"\"*\"\"!" }}
{PARA 11 "" 1 "" {XPPMATH 20 "6#7$$\"++++]V!#5$\"\"*\"\"!" }}{PARA 11 
"" 1 "" {XPPMATH 20 "6#7$$\"++++]W!#5$\"\"*\"\"!" }}{PARA 11 "" 1 "" 
{XPPMATH 20 "6#7$$\"++++]X!#5$\"\"*\"\"!" }}{PARA 11 "" 1 "" {XPPMATH 
20 "6#7$$\"++++]Y!#5$\"#5\"\"!" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#7$$
\"++++]Z!#5$\"#5\"\"!" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#7$$\"++++][!#
5$\"#5\"\"!" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#7$$\"++++]\\!#5$\"#5\"
\"!" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#7$$\"++++]]!#5$\"#5\"\"!" }}
{PARA 11 "" 1 "" {XPPMATH 20 "6#7$$\"++++]^!#5$\"#5\"\"!" }}{PARA 11 "
" 1 "" {XPPMATH 20 "6#7$$\"++++]_!#5$\"#5\"\"!" }}{PARA 11 "" 1 "" 
{XPPMATH 20 "6#7$$\"++++]`!#5$\"#5\"\"!" }}{PARA 11 "" 1 "" {XPPMATH 
20 "6#7$$\"++++]a!#5$\"#5\"\"!" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#7$$
\"++++]b!#5$\"#5\"\"!" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#7$$\"++++]c!#
5$\"#5\"\"!" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#7$$\"++++]d!#5$\"#5\"\"
!" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#7$$\"++++]e!#5$\"#6\"\"!" }}
{PARA 11 "" 1 "" {XPPMATH 20 "6#7$$\"++++]f!#5$\"#6\"\"!" }}{PARA 11 "
" 1 "" {XPPMATH 20 "6#7$$\"++++]g!#5$\"#6\"\"!" }}{PARA 11 "" 1 "" 
{XPPMATH 20 "6#7$$\"++++]h!#5$\"#6\"\"!" }}{PARA 11 "" 1 "" {XPPMATH 
20 "6#7$$\"++++]i!#5$\"#6\"\"!" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#7$$
\"++++]j!#5$\"#6\"\"!" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#7$$\"++++]k!#
5$\"#6\"\"!" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#7$$\"++++]l!#5$\"#6\"\"
!" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#7$$\"++++]m!#5$\"#6\"\"!" }}
{PARA 11 "" 1 "" {XPPMATH 20 "6#7$$\"++++]n!#5$\"#6\"\"!" }}{PARA 11 "
" 1 "" {XPPMATH 20 "6#7$$\"++++]o!#5$\"#6\"\"!" }}{PARA 11 "" 1 "" 
{XPPMATH 20 "6#7$$\"++++]p!#5$\"#6\"\"!" }}{PARA 11 "" 1 "" {XPPMATH 
20 "6#7$$\"++++]q!#5$\"#7\"\"!" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#7$$
\"++++]r!#5$\"#7\"\"!" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#7$$\"++++]s!#
5$\"#7\"\"!" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#7$$\"++++]t!#5$\"#7\"\"
!" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#7$$\"++++]u!#5$\"#7\"\"!" }}
{PARA 11 "" 1 "" {XPPMATH 20 "6#7$$\"++++]v!#5$\"#7\"\"!" }}{PARA 11 "
" 1 "" {XPPMATH 20 "6#7$$\"++++]w!#5$\"#7\"\"!" }}{PARA 11 "" 1 "" 
{XPPMATH 20 "6#7$$\"++++]x!#5$\"#7\"\"!" }}{PARA 11 "" 1 "" {XPPMATH 
20 "6#7$$\"++++]y!#5$\"#7\"\"!" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#7$$
\"++++]z!#5$\"#8\"\"!" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#7$$\"++++]!)!
#5$\"#8\"\"!" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#7$$\"++++]\")!#5$\"#8
\"\"!" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#7$$\"++++]#)!#5$\"#8\"\"!" }}
{PARA 11 "" 1 "" {XPPMATH 20 "6#7$$\"++++]$)!#5$\"#8\"\"!" }}{PARA 11 
"" 1 "" {XPPMATH 20 "6#7$$\"++++]%)!#5$\"#8\"\"!" }}{PARA 11 "" 1 "" 
{XPPMATH 20 "6#7$$\"++++]&)!#5$\"#8\"\"!" }}{PARA 11 "" 1 "" {XPPMATH 
20 "6#7$$\"++++]')!#5$\"#9\"\"!" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#7$$
\"++++]()!#5$\"#9\"\"!" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#7$$\"++++]))
!#5$\"#9\"\"!" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#7$$\"++++]*)!#5$\"#9
\"\"!" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#7$$\"++++]!*!#5$\"#9\"\"!" }}
{PARA 11 "" 1 "" {XPPMATH 20 "6#7$$\"++++]\"*!#5$\"#9\"\"!" }}{PARA 
11 "" 1 "" {XPPMATH 20 "6#7$$\"++++]#*!#5$\"#:\"\"!" }}{PARA 11 "" 1 "
" {XPPMATH 20 "6#7$$\"++++]$*!#5$\"#:\"\"!" }}{PARA 11 "" 1 "" 
{XPPMATH 20 "6#7$$\"++++]%*!#5$\"#:\"\"!" }}{PARA 11 "" 1 "" {XPPMATH 
20 "6#7$$\"++++]&*!#5$\"#;\"\"!" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#7$$
\"++++]'*!#5$\"#;\"\"!" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#7$$\"++++](*
!#5$\"#<\"\"!" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#7$$\"++++])*!#5$\"#<
\"\"!" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#7$$\"++++]**!#5$\"#>\"\"!" }}
}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 0 "" }}}}{MARK "0 0 0" 704 }
{VIEWOPTS 1 1 0 1 1 1803 1 1 1 1 }{PAGENUMBERS 0 1 2 33 1 1 }