1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
|
from __future__ import print_function
import openturns as ot
from matplotlib import pyplot as plt
from openturns.viewer import View
import math as m
oldPrecision = ot.PlatformInfo.GetNumericalPrecision()
ot.PlatformInfo.SetNumericalPrecision(16)
a = -m.pi
b = m.pi
f = ot.NumericalMathFunction(['x', 'y'], ['1+cos(x)*sin(y)'])
l = [ot.NumericalMathFunction('x', ' 2+cos(x)')]
u = [ot.NumericalMathFunction('x', '-2-cos(x)')]
# Draw the graph of the integrand and the bounds:
g = ot.Graph('Integration nodes', 'x', 'y', True, 'topright')
g.add(f.draw([a, a], [b, b]))
curve = l[0].draw(a, b).getDrawable(0)
curve.setLineWidth(2)
curve.setColor('red')
g.add(curve)
curve = u[0].draw(a, b).getDrawable(0)
curve.setLineWidth(2)
curve.setColor('red')
g.add(curve)
# Evaluate the integral with high precision:
Iref = ot.IteratedQuadrature(ot.GaussKronrod(100000, 1e-13,
ot.GaussKronrodRule(ot.GaussKronrodRule.G11K23))).integrate(f, a, b, l, u)
# Evaluate the integral with the default GaussKronrod algorithm:
f.enableHistory()
I1 = ot.IteratedQuadrature(ot.GaussKronrod()).integrate(f, a, b, l, u)
sample1 = f.getHistoryInput().getSample()
print('I1=', I1, '#evals=', sample1.getSize(),
'err=', abs(100.0 * (1.0 - I1[0] / Iref[0])), '%')
cloud = ot.Cloud(sample1)
cloud.setPointStyle('fcircle')
cloud.setColor('green')
g.add(cloud)
f.clearHistory()
# Evaluate the integral with the default IteratedQuadrature algorithm:
I2 = ot.IteratedQuadrature().integrate(f, a, b, l, u)
sample2 = f.getHistoryInput().getSample()
# print('I2=', I2, '#evals=', sample2.getSize(), \
# 'err=', abs(100.0*(1.0-I2[0]/Iref[0])), '%')
cloud = ot.Cloud(sample2)
cloud.setPointStyle('fcircle')
cloud.setColor('gold')
g.add(cloud)
fig = plt.figure(figsize=(4, 4))
plt.suptitle("IteratedQuadrature example")
axis = fig.add_subplot(111)
axis.set_xlim(auto=True)
View(g, figure=fig, axes=[axis], add_legend=False)
ot.PlatformInfo.SetNumericalPrecision(oldPrecision)
|