File: t_AbdoRackwitz_std.py

package info (click to toggle)
openturns 1.7-3
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 38,588 kB
  • ctags: 26,495
  • sloc: cpp: 144,032; python: 26,855; ansic: 7,868; sh: 419; makefile: 263; yacc: 123; lex: 44
file content (40 lines) | stat: -rwxr-xr-x 1,594 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
#! /usr/bin/env python

from __future__ import print_function
import openturns as ot

levelFunction = ot.NumericalMathFunction(
    ["x1", "x2", "x3", "x4"], ["y1"], ["x1+2*x2-3*x3+4*x4"])
# Add a finite difference gradient to the function, as Abdo Rackwitz algorithm
# needs it
myGradient = ot.NonCenteredFiniteDifferenceGradient(
    1e-7, levelFunction.getEvaluation())
print("myGradient = ", repr(myGradient))
# Substitute the gradient
levelFunction.setGradient(
    ot.NonCenteredFiniteDifferenceGradient(myGradient))
startingPoint = [0.0] * 4
algo = ot.AbdoRackwitz(ot.OptimizationProblem(levelFunction, 3.0))
algo.setStartingPoint(startingPoint)
algo.run()
print("result = ", algo.getResult())

levelFunction = ot.NumericalMathFunction(
        ["x1", "x2", "x3", "x4"], ["y1"], ["x1*cos(x1)+2*x2*x3-3*x3+4*x3*x4"])
# Add a finite difference gradient to the function, as Abdo Rackwitz algorithm
# needs it
myGradient = ot.NonCenteredFiniteDifferenceGradient(
    1e-7, levelFunction.getEvaluation())
print("myGradient = ", repr(myGradient))
# Substitute the gradient
levelFunction.setGradient(
    ot.NonCenteredFiniteDifferenceGradient(myGradient))
startingPoint = [0.0] * 4
algo = ot.AbdoRackwitz(ot.OptimizationProblem(levelFunction, -0.5))
algo.setStartingPoint(startingPoint)
print("myalgorithm=", repr(algo))
algo.run()
print("result = ",  algo.getResult())
print("evaluation calls number=", levelFunction.getEvaluationCallsNumber())
print("gradient   calls number=", levelFunction.getGradientCallsNumber())
print("hessian    calls number=", levelFunction.getHessianCallsNumber())