File: t_Arcsine_std.py

package info (click to toggle)
openturns 1.7-3
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 38,588 kB
  • ctags: 26,495
  • sloc: cpp: 144,032; python: 26,855; ansic: 7,868; sh: 419; makefile: 263; yacc: 123; lex: 44
file content (121 lines) | stat: -rwxr-xr-x 4,738 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
#! /usr/bin/env python

from __future__ import print_function
from openturns import *

TESTPREAMBLE()
RandomGenerator.SetSeed(0)


# Instanciate one distribution object
distribution = Arcsine(5.2, 11.6)
print("Distribution ", repr(distribution))
print("Distribution ", distribution)

# Get mean and covariance
print("Mean= ", repr(distribution.getMean()))
print("Covariance= ", repr(distribution.getCovariance()))

# Is this distribution elliptical ?
print("Elliptical = ", distribution.isElliptical())

# Test for realization of distribution
oneRealization = distribution.getRealization()
print("oneRealization=", repr(oneRealization))

# Test for sampling
size = 10000
oneSample = distribution.getSample(size)
print("oneSample first=", repr(
    oneSample[0]), " last=", repr(oneSample[size - 1]))
print("mean=", repr(oneSample.computeMean()))
print("covariance=", repr(oneSample.computeCovariance()))

size = 100
for i in range(2):
    msg = ''
    if FittingTest.Kolmogorov(distribution.getSample(size), distribution).getBinaryQualityMeasure():
        msg = "accepted"
    else:
        msg = "rejected"
    print("Kolmogorov test for the generator, sample size=", size, " is", msg)
    size *= 10

# Define a point
point = NumericalPoint(distribution.getDimension(), 9.1)
print("Point= ", repr(point))

# Show PDF and CDF of point
eps = 1e-5
max = distribution.getB() + distribution.getA()
min = distribution.getB() - distribution.getA()
# derivative of PDF with regards its arguments
DDF = distribution.computeDDF(point)
print("ddf     =", repr(DDF))
# by the finite difference technique
print("ddf (FD)=", repr(NumericalPoint(1, (distribution.computePDF(point + NumericalPoint(1, eps)) -
                                           distribution.computePDF(point + NumericalPoint(1, -eps))) / (2.0 * eps))))

# PDF value
LPDF = distribution.computeLogPDF(point)
print("log pdf=%.6f" % LPDF)
PDF = distribution.computePDF(point)
print("pdf     =%.6f" % PDF)
# by the finite difference technique from CDF
print("pdf (FD)=%.6f" % ((distribution.computeCDF(point + NumericalPoint(1, eps)) -
                          distribution.computeCDF(point + NumericalPoint(1, -eps))) / (2.0 * eps)))

# derivative of the PDF with regards the parameters of the distribution
CDF = distribution.computeCDF(point)
print("cdf=%.6f" % CDF)
CCDF = distribution.computeComplementaryCDF(point)
print("ccdf=%.6f" % CCDF)
PDFgr = distribution.computePDFGradient(point)
print("pdf gradient     =", repr(PDFgr))
# by the finite difference technique
PDFgrFD = NumericalPoint(2)
PDFgrFD[0] = (Arcsine(distribution.getA() + eps, distribution.getB()).computePDF(point) -
              Arcsine(distribution.getA() - eps, distribution.getB()).computePDF(point)) / (2.0 * eps)
PDFgrFD[1] = (Arcsine(distribution.getA(), distribution.getB() + eps).computePDF(point) -
              Arcsine(distribution.getA(), distribution.getB() - eps).computePDF(point)) / (2.0 * eps)
print("pdf gradient (FD)=", repr(PDFgrFD))

# derivative of the PDF with regards the parameters of the distribution
CDFgr = distribution.computeCDFGradient(point)
print("cdf gradient     =", repr(CDFgr))
CDFgrFD = NumericalPoint(2)
CDFgrFD[0] = (Arcsine(distribution.getA() + eps, distribution.getB()).computeCDF(point) -
              Arcsine(distribution.getA() - eps, distribution.getB()).computeCDF(point)) / (2.0 * eps)
CDFgrFD[1] = (Arcsine(distribution.getA(), distribution.getB() + eps).computeCDF(point) -
              Arcsine(distribution.getA(), distribution.getB() - eps).computeCDF(point)) / (2.0 * eps)
print("cdf gradient (FD)=",  repr(CDFgrFD))

# quantile
quantile = distribution.computeQuantile(0.95)
print("quantile=", repr(quantile))
print("cdf(quantile)=%.6f" % distribution.computeCDF(quantile))
mean = distribution.getMean()
print("mean=", repr(mean))
standardDeviation = distribution.getStandardDeviation()
print("standard deviation=", repr(standardDeviation))
skewness = distribution.getSkewness()
print("skewness=", repr(skewness))
kurtosis = distribution.getKurtosis()
print("kurtosis=", repr(kurtosis))
covariance = distribution.getCovariance()
print("covariance=", repr(covariance))
parameters = distribution.getParametersCollection()
print("parameters=", repr(parameters))
for i in range(6):
    print("standard moment n=", i, " value=",
          distribution.getStandardMoment(i))
print("Standard representative=", distribution.getStandardRepresentative())

# Specific to this distribution
mu = distribution.getMu()
print("mu=", mu)
sigma = distribution.getSigma()
print("sigma= %.12g" % sigma)
newDistribution = Arcsine(mu, sigma, Arcsine.MUSIGMA)
print("a from (mu, sigma)=", newDistribution.getA())
print("b from (mu, sigma)= %.12g" % newDistribution.getB())