1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
|
#! /usr/bin/env python
from __future__ import print_function
from openturns import *
TESTPREAMBLE()
RandomGenerator.SetSeed(0)
try:
# Instanciate one distribution object
distribution = Beta(2.0, 5.0, -1.0, 2.0)
print("Distribution ", repr(distribution))
print("Distribution ", distribution)
# Is this distribution elliptical ?
print("Elliptical = ", distribution.isElliptical())
# Is this distribution continuous ?
print("Continuous = ", distribution.isContinuous())
# Test for realization of distribution
oneRealization = distribution.getRealization()
print("oneRealization=", repr(oneRealization))
# Test for sampling
size = 10000
oneSample = distribution.getSample(size)
print("oneSample first=", repr(
oneSample[0]), " last=", repr(oneSample[size - 1]))
print("mean=", repr(oneSample.computeMean()))
print("covariance=", repr(oneSample.computeCovariance()))
size = 100
for i in range(2):
msg = ''
if FittingTest.Kolmogorov(distribution.getSample(size), distribution).getBinaryQualityMeasure():
msg = "accepted"
else:
msg = "rejected"
print(
"Kolmogorov test for the generator, sample size=", size, " is", msg)
size *= 10
# Define a point
point = NumericalPoint(distribution.getDimension(), 1.0)
print("Point= ", repr(point))
# Show PDF and CDF of point
eps = 1e-5
# derivative of PDF with regards its arguments
DDF = distribution.computeDDF(point)
print("ddf =", repr(DDF))
# by the finite difference technique
print("ddf (FD)=", repr(NumericalPoint(1, (distribution.computePDF(
point + NumericalPoint(1, eps)) - distribution.computePDF(point + NumericalPoint(1, -eps))) / (2.0 * eps))))
# PDF value
LPDF = distribution.computeLogPDF(point)
print("log pdf=%.6f" % LPDF)
PDF = distribution.computePDF(point)
print("pdf =%.6f" % PDF)
# by the finite difference technique from CDF
print("pdf (FD)=%.6f" % ((distribution.computeCDF(point + NumericalPoint(1, eps)) -
distribution.computeCDF(point + NumericalPoint(1, -eps))) / (2.0 * eps)))
# derivative of the PDF with regards the parameters of the distribution
CDF = distribution.computeCDF(point)
print("cdf=%.6f" % CDF)
CCDF = distribution.computeComplementaryCDF(point)
print("ccdf=%.6f" % CCDF)
PDFgr = distribution.computePDFGradient(point)
print("pdf gradient =", repr(PDFgr))
# by the finite difference technique
PDFgrFD = NumericalPoint(4)
PDFgrFD[0] = (Beta(distribution.getR() + eps, distribution.getT(), distribution.getA(), distribution.getB()).computePDF(point) -
Beta(distribution.getR() - eps, distribution.getT(), distribution.getA(), distribution.getB()).computePDF(point)) / (2.0 * eps)
PDFgrFD[1] = (Beta(distribution.getR(), distribution.getT() + eps, distribution.getA(), distribution.getB()).computePDF(point) -
Beta(distribution.getR(), distribution.getT() - eps, distribution.getA(), distribution.getB()).computePDF(point)) / (2.0 * eps)
PDFgrFD[2] = (Beta(distribution.getR(), distribution.getT(), distribution.getA() + eps, distribution.getB()).computePDF(point) -
Beta(distribution.getR(), distribution.getT(), distribution.getA() - eps, distribution.getB()).computePDF(point)) / (2.0 * eps)
PDFgrFD[3] = (Beta(distribution.getR(), distribution.getT(), distribution.getA(), distribution.getB() + eps).computePDF(point) -
Beta(distribution.getR(), distribution.getT(), distribution.getA(), distribution.getB() - eps).computePDF(point)) / (2.0 * eps)
print("pdf gradient (FD)=", repr(PDFgrFD))
# derivative of the PDF with regards the parameters of the distribution
CDFgr = distribution.computeCDFGradient(point)
print("cdf gradient =", repr(CDFgr))
CDFgrFD = NumericalPoint(4)
CDFgrFD[0] = (Beta(distribution.getR() + eps, distribution.getT(), distribution.getA(), distribution.getB()).computeCDF(point) -
Beta(distribution.getR() - eps, distribution.getT(), distribution.getA(), distribution.getB()).computeCDF(point)) / (2.0 * eps)
CDFgrFD[1] = (Beta(distribution.getR(), distribution.getT() + eps, distribution.getA(), distribution.getB()).computeCDF(point) -
Beta(distribution.getR(), distribution.getT() - eps, distribution.getA(), distribution.getB()).computeCDF(point)) / (2.0 * eps)
CDFgrFD[2] = (Beta(distribution.getR(), distribution.getT(), distribution.getA() + eps, distribution.getB()).computeCDF(point) -
Beta(distribution.getR(), distribution.getT(), distribution.getA() - eps, distribution.getB()).computeCDF(point)) / (2.0 * eps)
CDFgrFD[3] = (Beta(distribution.getR(), distribution.getT(), distribution.getA(), distribution.getB() + eps).computeCDF(point) -
Beta(distribution.getR(), distribution.getT(), distribution.getA(), distribution.getB() - eps).computeCDF(point)) / (2.0 * eps)
print("cdf gradient (FD)=", repr(CDFgrFD))
# quantile
quantile = distribution.computeQuantile(0.95)
print("quantile=", repr(quantile))
print("cdf(quantile)=%.6f" % distribution.computeCDF(quantile))
mean = distribution.getMean()
print("mean=", repr(mean))
standardDeviation = distribution.getStandardDeviation()
print("standard deviation=", repr(standardDeviation))
skewness = distribution.getSkewness()
print("skewness=", repr(skewness))
kurtosis = distribution.getKurtosis()
print("kurtosis=", repr(kurtosis))
covariance = distribution.getCovariance()
print("covariance=", repr(covariance))
parameters = distribution.getParametersCollection()
print("parameters=", repr(parameters))
for i in range(6):
print("standard moment n=", i, " value=",
distribution.getStandardMoment(i))
print("Standard representative=", distribution.getStandardRepresentative())
# Specific to this distribution
mu = distribution.getMu()
print("mu=%.6f" % mu)
sigma = distribution.getSigma()
print("sigma=%.6f" % sigma)
newDistribution = Beta(
mu, sigma, distribution.getA(), distribution.getB(), 1)
print("r from (mu, sigma)=%.6f" % newDistribution.getR())
print("t from (mu, sigma)=%.6f" % newDistribution.getT())
# Test for non-normal parameters
inf = float("inf")
nan = float("nan")
import sys
try:
d = Beta(inf, 1.0, 0.0, 1.0)
except:
print(sys.exc_info()[1])
try:
d = Beta(nan, 1.0, 0.0, 1.0)
except:
print(sys.exc_info()[1])
try:
d = Beta(1.0, inf, 0.0, 1.0)
except:
print(sys.exc_info()[1])
try:
d = Beta(1.0, nan, 0.0, 1.0)
except:
print(sys.exc_info()[1])
try:
d = Beta(1.0, 2.0, inf, 1.0)
except:
print(sys.exc_info()[1])
try:
d = Beta(1.0, 2.0, nan, 1.0)
except:
print(sys.exc_info()[1])
try:
d = Beta(1.0, 2.0, 1.0, inf)
except:
print(sys.exc_info()[1])
try:
d = Beta(1.0, 2.0, 1.0, nan)
except:
print(sys.exc_info()[1])
except:
import sys
print("t_Beta_std.py", sys.exc_info()[0], sys.exc_info()[1])
|