File: t_BoxCoxFactory_glm.py

package info (click to toggle)
openturns 1.7-3
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 38,588 kB
  • ctags: 26,495
  • sloc: cpp: 144,032; python: 26,855; ansic: 7,868; sh: 419; makefile: 263; yacc: 123; lex: 44
file content (47 lines) | stat: -rwxr-xr-x 1,109 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
#! /usr/bin/env python

from __future__ import print_function
import openturns as ot

ot.RandomGenerator.SetSeed(0)

size = 200

# input sample
inputSample = ot.Uniform(-1.0, 1.0).getSample(size)
outputSample = ot.NumericalSample(inputSample)

# Evaluation of y = ax + b (a: scale, b: translate)

# scale
scale = [3.0]
outputSample *= scale

# translate sample
translate = [3.1]
outputSample += translate

# Finally inverse transform using an arbitrary lambda
lamb = [1.8]
boxCoxFunction = ot.InverseBoxCoxEvaluationImplementation(lamb)

# transform y using BoxCox function
outputSample = boxCoxFunction(outputSample)

# Add small noise
epsilon = ot.Normal(0, 1.0e-2).getSample(size)
outputSample +=  epsilon

# Now we build the factory
factory = ot.BoxCoxFactory()

# Creation of the BoxCoxTransform
result = ot.GeneralizedLinearModelResult()
basis = ot.LinearBasisFactory(1).build()
covarianceModel = ot.DiracCovarianceModel()
shift = [1.0e-1]
myBoxCox = factory.build(inputSample, outputSample, covarianceModel, basis, shift, result)

print("myBoxCox (GLM) =", myBoxCox)
print("GLM result     =", result)