File: t_ClaytonCopula_std.py

package info (click to toggle)
openturns 1.7-3
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 38,588 kB
  • ctags: 26,495
  • sloc: cpp: 144,032; python: 26,855; ansic: 7,868; sh: 419; makefile: 263; yacc: 123; lex: 44
file content (98 lines) | stat: -rwxr-xr-x 3,427 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
#! /usr/bin/env python

from __future__ import print_function
from openturns import *
from math import *

TESTPREAMBLE()
RandomGenerator.SetSeed(0)

try:
    # Instanciate one distribution object
    dim = 2
    copula = ClaytonCopula(2.5)
    print("Copula ", repr(copula))
    print("Copula ", copula)
    print("Mean ", repr(copula.getMean()))
    print("Covariance ", repr(copula.getCovariance()))

    # Is this copula an elliptical distribution?
    print("Elliptical distribution= ", copula.isElliptical())

    # Is this copula elliptical ?
    print("Elliptical copula= ", copula.hasEllipticalCopula())

    # Is this copula independent ?
    print("Independent copula= ", copula.hasIndependentCopula())

    # Test for realization of distribution
    oneRealization = copula.getRealization()
    print("oneRealization=", repr(oneRealization))

    # Test for sampling
    size = 10
    oneSample = copula.getSample(size)
    print("oneSample=", repr(oneSample))

    # Test for sampling
    size = 10000
    anotherSample = copula.getSample(size)
    print("anotherSample mean=", repr(anotherSample.computeMean()))
    print("anotherSample covariance=", repr(anotherSample.computeCovariance()))

    # Define a point
    point = NumericalPoint(dim, 0.2)

    # Show PDF and CDF of point
    pointPDF = copula.computePDF(point)
    pointCDF = copula.computeCDF(point)
    print("Point = ", repr(point), " pdf=%.6f" %
          pointPDF, " cdf=%.6f" % pointCDF)

    # Get 50% quantile
    quantile = copula.computeQuantile(0.5)
    print("Quantile=", repr(quantile))
    print("CDF(quantile)=%.6f" % copula.computeCDF(quantile))

    # Extract the marginals
    for i in range(dim):
        margin = copula.getMarginal(i)
        print("margin=", repr(margin))
        print("margin PDF=%.6f" % margin.computePDF(NumericalPoint(1, 0.25)))
        print("margin CDF=%.6f" % margin.computeCDF(NumericalPoint(1, 0.25)))
        print("margin quantile=", repr(margin.computeQuantile(0.95)))
        print("margin realization=", repr(margin.getRealization()))

    # Extract a 2-D marginal
    indices = Indices(2, 0)
    indices[0] = 1
    indices[1] = 0
    print("indices=", repr(indices))
    margins = copula.getMarginal(indices)
    print("margins=", repr(margins))
    print("margins PDF=%.6f" % margins.computePDF(NumericalPoint(2, 0.25)))
    print("margins CDF=%.6f" % margins.computeCDF(NumericalPoint(2, 0.25)))
    quantile = NumericalPoint(margins.computeQuantile(0.95))
    print("margins quantile=", repr(quantile))
    print("margins CDF(qantile)=%.6f" % margins.computeCDF(quantile))
    print("margins realization=", repr(margins.getRealization()))

    # Additional tests for PDF/CDF in extreme cases
    # We focus on the main diagonal as it is the most challenging computation
    points = [[1.0e-12] * 2, [1.0e-7] * 2, [0.1] * 2,
              [0.5] * 2, [0.1] * 2, [0.1] * 2, [0.1] * 2]

    thetas = [1.0e-12, 0.9e-8, 1.1e-8, -0.99, 9.9e1, 1.1e2, 1.0e5]
    c_py = list()
    C_py = list()
    for i in range(len(thetas)):
        x = NumericalPoint(points[i])
        copula = ClaytonCopula(thetas[i])
        print(copula)
        c_py.append(copula.computePDF(x))
        C_py.append(copula.computeCDF(x))
        print("PDF(", x, ")=%.12e" % c_py[i])
        print("CDF(", x, ")=%.12e" % C_py[i])
except:
    import sys
    print("t_ClaytonCopula_std.py", sys.exc_info()[0], sys.exc_info()[1])