File: t_ComplexMatrix_std.py

package info (click to toggle)
openturns 1.7-3
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 38,588 kB
  • ctags: 26,495
  • sloc: cpp: 144,032; python: 26,855; ansic: 7,868; sh: 419; makefile: 263; yacc: 123; lex: 44
file content (175 lines) | stat: -rwxr-xr-x 4,896 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
#! /usr/bin/env python

from __future__ import print_function
from openturns import *
from math import *

TESTPREAMBLE()

try:

    # DEFAULT CONSTRUCTOR AND STRING CONVERTER
    print("test 0 : default constructor and string converter")

    # Default constructor
    matrix0 = ComplexMatrix()

    # String converter
    print("matrix0 = ", repr(matrix0))

    # CONSTRUCTOR WITH SIZE, OPERATOR() AND STRING CONVERTER
    print(
        "test number one : constructor with size, operator() and string converter")

    # Constructor with size
    matrix1 = ComplexMatrix(2, 2)

    # Check operator() methods
    matrix1[0, 0] = 1. + 1j
    matrix1[1, 0] = 2. + 4j
    matrix1[0, 1] = 3. - 1j
    matrix1[1, 1] = 4.

    # String converter
    print("matrix1 = ", repr(matrix1))

    # COPY CONSTRUCTOR AND STRING CONVERTER
    print("test 2 : copy constructor and string converter")

    # Copy constructor
    matrix2 = ComplexMatrix(matrix1)

    # String converter
    print("matrix2 = ", repr(matrix2))

    # GET DIMENSIONS METHODS
    print("test 3 : dimension methods")

    # Get dimension methods
    print("matrix1's nbRows = ", matrix1.getNbRows())
    print("matrix1's nbColumns = ", matrix1.getNbColumns())

    # CONSTRUCTOR WITH COLLECTION
    print("test 4 : constructor with collection method")

    # Create the collection of values
    elementsValues = NumericalComplexCollection()
    elementsValues.add(1. - 1j)
    elementsValues.add(2. - 1j)
    elementsValues.add(3. - 1j)
    elementsValues.add(4. + 1j)
    elementsValues.add(5. + 1j)
    elementsValues.add(6. + 1j)

    # Check the content of the collection
    print("elementsValues = ", repr(elementsValues))

    # Check the constructor with collection
    matrix0bis = ComplexMatrix(2, 2, elementsValues)
    print("matrix0bis = ", repr(matrix0bis))

    # TRANSPOSITION METHOD AND CONJUGATE METHOD
    print("test 5 : transposition / conjugate method")

    # Check transpose method
    matrix4 = matrix1.transpose()
    matrix5 = matrix1.conjugate()
    print("matrix1 transposed = ", repr(matrix4))
    print("matrix1 conjugated = ", repr(matrix5))

    # TRANSPOSITION AND CONJUGATE COUPLED METHOD
    print("transposition and conjugate method")

    # Check transpose method
    matrix6 = matrix1.conjugateTranspose()
    print("matrix1 conjugated and transposed = ", repr(matrix6))

    # ADDITION METHOD
    print("test 6 : addition method")

    # Check addition method : we check the operator and the symmetry of the
    # operator, thus testing the comparison operator
    sum1 = matrix1 + matrix4
    sum2 = matrix4 + matrix1
    print("sum1 = ", repr(sum1))
    print("sum2 = ", repr(sum2))
    print("sum1 equals sum2 = ", sum1 == sum2)

    # SUBSTRACTION METHOD
    print("test 7 : substraction method")

    # Check substraction method
    diff = matrix1 - matrix4
    print("diff = ", repr(diff))

    #  MATRIX MULTIPLICATION METHOD
    print("test 8 : matrix multiplication method")

    # Check multiplication method
    prod = matrix1 * matrix4
    print("prod = ", repr(prod))

    # MULTIPLICATION WITH A NUMERICAL POINT METHOD
    print("test 9 : multiplication with a numerical point method")

    # Create the numerical point
    pt = NumericalPoint()
    pt.add(1.)
    pt.add(2.)
    print("pt = ", repr(pt))

    # Check the product method
    ptResult = matrix1 * pt
    print("ptResult = ", repr(ptResult))

    #  MULTIPLICATION AND DIVISION BY A NUMERICAL SCALAR METHODS
    print(
        "test 10 : multiplication and division by a numerical scalar methods")

    # Check the multiplication method
    s = 3. + 1j
    scalprod1 = matrix1 * s
    print("scalprod1 = ", repr(scalprod1))

    # Check the division method
    scaldiv1 = matrix1 / s
    print("scaldiv1 = ", repr(scaldiv1))

    #  ISEMPTY METHOD
    print("test 10 : isEmpty method")

    # Check method isEmpty
    matrix7 = ComplexMatrix()
    matrix8 = ComplexMatrix()

    print("matrix1 is empty = ", matrix1.isEmpty())
    print("matrix5 is empty = ", matrix7.isEmpty())
    print("matrix6 is empty = ", matrix8.isEmpty())
    print("matrix0 is empty = ", matrix0.isEmpty())

    # MULTIPLICATION WITH A NUMERICAL POINT METHOD
    print("test 11 : multiplication with a numerical point method")

    # Create the numerical point
    pt_test = NumericalPoint()
    pt_test.add(1.)
    pt_test.add(2.)
    print("pt_test = ", repr(pt_test))

    A = ComplexMatrix(2, 2)
    A[0, 0] = 0.5
    A[1, 0] = -(sqrt(3.) / 2)
    A[0, 1] = (sqrt(3.) / 2)
    A[1, 1] = 0.5
    B = A.transpose()
    identity = B * A

    # Check the product method
    ptResult2 = identity * pt_test
    print("A = ", repr(A))
    print("B = ", repr(B))
    print("identity = ", repr(identity))
    print("ptResult2 = ", repr(ptResult2))
except:
    import sys
    print("t_ComplexMatrix_std.py", sys.exc_info()[0], sys.exc_info()[1])