File: t_CorrelationAnalysis_std.py

package info (click to toggle)
openturns 1.7-3
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 38,588 kB
  • ctags: 26,495
  • sloc: cpp: 144,032; python: 26,855; ansic: 7,868; sh: 419; makefile: 263; yacc: 123; lex: 44
file content (38 lines) | stat: -rwxr-xr-x 1,110 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
#! /usr/bin/env python

from __future__ import print_function
from openturns import *

TESTPREAMBLE()
RandomGenerator.SetSeed(0)

try:
    dimension = 2
    sampleSize = 1000

    # we create an analytical function
    analytical = NumericalMathFunction(['x0', 'x1'], ['f'], ['10+3*x0+x1'])

    # we create a collection of uniform distributions over [-Pi Pi[
    aCollection = DistributionCollection()
    for i in range(dimension):
        aCollection.add(Distribution(Normal()))

    # we create one distribution object
    aDistribution = ComposedDistribution(
        aCollection, Copula(IndependentCopula(dimension)))

    randomVector = RandomVector(aDistribution)
    composite = RandomVector(analytical, randomVector)
    print("composite=", composite)

    # we create two input samples for the function
    inputSample = randomVector.getSample(sampleSize)
    outputSample = analytical(inputSample)

    src = CorrelationAnalysis.SRC(inputSample, outputSample)
    print("src=", src)
except:
    import sys
    print("t_CorrelationAnalysis_sobol.py",
          sys.exc_info()[0], sys.exc_info()[1])