File: t_CumulativeDistributionNetwork_std.py

package info (click to toggle)
openturns 1.7-3
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 38,588 kB
  • ctags: 26,495
  • sloc: cpp: 144,032; python: 26,855; ansic: 7,868; sh: 419; makefile: 263; yacc: 123; lex: 44
file content (69 lines) | stat: -rwxr-xr-x 2,467 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
#! /usr/bin/env python

from __future__ import print_function
import openturns as ot

ot.RandomGenerator.SetSeed(0)

try:
    # Instanciate one distribution object
    graph = ot.BipartiteGraph([[0, 1], [0, 1]])
    distribution = ot.CumulativeDistributionNetwork([ot.Normal(2)]*2, graph)
    print("Distribution ", repr(distribution))
    print("Distribution ", distribution)
    
    # Is this distribution elliptical ?
    print("Elliptical = ", distribution.isElliptical())
    
    # Is this distribution continuous ?
    print("Continuous = ", distribution.isContinuous())
    
    # Test for realization of distribution
    oneRealization = distribution.getRealization()
    print("oneRealization=", oneRealization)
    
    # Test for sampling
    size = 10000
    oneSample = distribution.getSample( size )
    print("oneSample first=", oneSample[0], " last=", oneSample[size - 1])
    print("mean=", oneSample.computeMean())
    print("covariance=", oneSample.computeCovariance())

    # Define a point
    point = [1.0]*distribution.getDimension()
    print("Point= ", point)
    
    # Show PDF and CDF of point
    LPDF = distribution.computeLogPDF( point )
    print("log pdf =%.4e" % LPDF)
    PDF = distribution.computePDF( point )
    print("pdf     =%.4e" % PDF)
    CDF = distribution.computeCDF( point )
    print("cdf     =%.4e" % CDF)
    CCDF = distribution.computeComplementaryCDF( point )
    print("ccdf    =%.4e" % CCDF)
    Survival = distribution.computeSurvivalFunction( point )
    print("survival=%.4e" % Survival)
    quantile = distribution.computeQuantile( 0.95 )
    print("quantile=", quantile)
    print("cdf(quantile)= %.12g" % distribution.computeCDF(quantile))
    mean = distribution.getMean()
    print("mean=", mean)
    standardDeviation = distribution.getStandardDeviation()
    print("standard deviation=", standardDeviation)
    skewness = distribution.getSkewness()
    print("skewness=", skewness)
    kurtosis = distribution.getKurtosis()
    print("kurtosis=", kurtosis)
    covariance = distribution.getCovariance()
    print("covariance=", covariance)
    correlation = distribution.getCorrelation()
    print("correlation=", correlation)
    spearman = distribution.getSpearmanCorrelation()
    print("spearman=", spearman)
    kendall = distribution.getKendallTau()
    print("kendall=", kendall)

except:
    import sys
    print("t_CumulativeDistributionNetwork_std.py", sys.exc_info()[0], sys.exc_info()[1])