1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
|
#! /usr/bin/env python
from __future__ import print_function
from openturns import *
from math import *
TESTPREAMBLE()
RandomGenerator.SetSeed(0)
try:
# 1D tests
distribution = Dirac(0.7)
print("Distribution ", distribution)
# Is this distribution elliptical ?
print("Elliptical = ", distribution.isElliptical())
# Is this distribution continuous ?
print("Continuous = ", distribution.isContinuous())
# Test for realization of distribution
oneRealization = distribution.getRealization()
print("oneRealization=", oneRealization)
# Test for sampling
size = 10000
oneSample = distribution.getSample(size)
print("oneSample first=", oneSample[0], " last=", oneSample[size - 1])
print("mean=", oneSample.computeMean())
sampleCovariance = oneSample.computeCovariance()[0, 0]
if (fabs(sampleCovariance) < 1.0e-16):
sampleCovariance = 0.0
print("covariance=", sampleCovariance)
# Define a point
point = NumericalPoint(distribution.getDimension(), 0.0)
print("Point= ", point)
# Show PDF and CDF of point
PDF = distribution.computePDF(point)
print("pdf =", PDF)
print("pdf (FD)=", (distribution.computeCDF(point + NumericalPoint(1, 0)) -
distribution.computeCDF(point + NumericalPoint(1, -1))))
CDF = distribution.computeCDF(point)
print("cdf=", CDF)
# Define a point
point = NumericalPoint(distribution.getSupport(distribution.getRange())[0])
print("Point= ", point)
# Show PDF and CDF of point
PDF = distribution.computePDF(point)
print("pdf =", PDF)
print("pdf (FD)=", (distribution.computeCDF(point + NumericalPoint(1, 0)) -
distribution.computeCDF(point + NumericalPoint(1, -1))))
CDF = distribution.computeCDF(point)
print("cdf=", CDF)
CF = distribution.computeCharacteristicFunction(0.5)
print("characteristic function= (%.12g%+.12gj)" % (CF.real, CF.imag))
GF = distribution.computeGeneratingFunction(0.5 + 0.3j)
print("generating function= (%.12g%+.12gj)" % (GF.real, GF.imag))
quantile = distribution.computeQuantile(0.95)
print("quantile=", quantile)
print("cdf(quantile)=", distribution.computeCDF(quantile))
mean = distribution.getMean()
print("mean=", mean)
standardDeviation = distribution.getStandardDeviation()
print("standard deviation=", standardDeviation)
skewness = distribution.getSkewness()
print("skewness=", skewness)
kurtosis = distribution.getKurtosis()
print("kurtosis=", kurtosis)
covariance = distribution.getCovariance()
print("covariance=", covariance)
parameters = distribution.getParametersCollection()
print("parameters=", parameters)
for i in range(6):
print("standard moment n=", i, " value=",
distribution.getStandardMoment(i))
print("Standard representative=", distribution.getStandardRepresentative())
# N-D tests
dim = 4
distribution = Dirac(NumericalPoint(dim, 2.3))
print("Distribution ", distribution)
# Is this distribution elliptical ?
print("Elliptical = ", distribution.isElliptical())
# Is this distribution continuous ?
print("Continuous = ", distribution.isContinuous())
# Test for realization of distribution
oneRealization = distribution.getRealization()
print("oneRealization=", oneRealization)
# Test for sampling
size = 10000
oneSample = distribution.getSample(size)
print("oneSample first=", oneSample[0], " last=", oneSample[size - 1])
print("mean=", oneSample.computeMean())
sampleCovariance = oneSample.computeCovariance()
for i in range(dim):
for j in range(i + 1):
if (fabs(sampleCovariance[i, j]) < 1.0e-16):
sampleCovariance[i, j] = 0.0
print("covariance=", sampleCovariance)
# Define a point
point = NumericalPoint(dim, 0.0)
print("Point= ", point)
# Show PDF and CDF of point
PDF = distribution.computePDF(point)
print("pdf =", PDF)
print("pdf (FD)=", (distribution.computeCDF(point + NumericalPoint(dim, 0)) -
distribution.computeCDF(point + NumericalPoint(dim, -1))))
CDF = distribution.computeCDF(point)
print("cdf=", CDF)
# Define a point
point = NumericalPoint(distribution.getSupport(distribution.getRange())[0])
print("Point= ", point)
# Show PDF and CDF of point
PDF = distribution.computePDF(point)
print("pdf =", PDF)
print("pdf (FD)=", (distribution.computeCDF(point + NumericalPoint(dim, 0)) -
distribution.computeCDF(point + NumericalPoint(dim, -1))))
CDF = distribution.computeCDF(point)
print("cdf=", CDF)
quantile = distribution.computeQuantile(0.95)
print("quantile=", quantile)
print("cdf(quantile)=", distribution.computeCDF(quantile))
mean = distribution.getMean()
print("mean=", mean)
standardDeviation = distribution.getStandardDeviation()
print("standard deviation=", standardDeviation)
skewness = distribution.getSkewness()
print("skewness=", skewness)
kurtosis = distribution.getKurtosis()
print("kurtosis=", kurtosis)
covariance = distribution.getCovariance()
print("covariance=", covariance)
parameters = distribution.getParametersCollection()
print("parameters=", parameters)
for i in range(6):
print("standard moment n=", i, " value=",
distribution.getStandardMoment(i))
print("Standard representative=", distribution.getStandardRepresentative())
except:
import sys
print("t_Dirac.py", sys.exc_info()[0], sys.exc_info()[1])
|