File: t_DirectionalSampling_std.expout

package info (click to toggle)
openturns 1.7-3
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 38,588 kB
  • ctags: 26,495
  • sloc: cpp: 144,032; python: 26,855; ansic: 7,868; sh: 419; makefile: 263; yacc: 123; lex: 44
file content (4 lines) | stat: -rw-r--r-- 4,493 bytes parent folder | download | duplicates (2)
1
2
3
4
DirectionalSampling= class=DirectionalSampling rootStrategy=class=RootStrategy implementation=class=SafeAndSlow derived from class=RootStrategyImplementation solver=class=Solver implementation=class=Brent derived from class=SolverImplementation absoluteError=1e-05 relativeError=1e-05 residualError=1e-08 maximumFunctionEvaluation=100 usedFunctionEvaluation=0 maximumDistance=8 stepSize=1 samplingStrategy=class=SamplingStrategy implementation=class=RandomDirection derived from class=SamplingStrategyImplementation dimension=4 derived from class=Simulation event=class=Event name=Unnamed implementation=class=EventRandomVectorImplementation antecedent=class=CompositeRandomVector function=class=NumericalMathFunction name=Unnamed implementation=class=NumericalMathFunctionImplementation name=Unnamed description=[E,F,L,I,d] evaluationImplementation=class=AnalyticalNumericalMathEvaluationImplementation name=Unnamed inputVariablesNames=[E,F,L,I] outputVariablesNames=[d] formulas=[-F*L^3/(3.*E*I)] gradientImplementation=class=AnalyticalNumericalMathGradientImplementation name=Unnamed evaluation=class=AnalyticalNumericalMathEvaluationImplementation name=Unnamed inputVariablesNames=[E,F,L,I] outputVariablesNames=[d] formulas=[-F*L^3/(3.*E*I)] hessianImplementation=class=AnalyticalNumericalMathHessianImplementation name=Unnamed evaluation=class=AnalyticalNumericalMathEvaluationImplementation name=Unnamed inputVariablesNames=[E,F,L,I] outputVariablesNames=[d] formulas=[-F*L^3/(3.*E*I)] antecedent=class=UsualRandomVector distribution=class=Normal name=Normal dimension=4 mean=class=NumericalPoint name=Unnamed dimension=4 values=[50,1,10,5] sigma=class=NumericalPoint name=Unnamed dimension=4 values=[1,1,1,1] correlationMatrix=class=CorrelationMatrix dimension=4 implementation=class=MatrixImplementation name=Unnamed rows=4 columns=4 values=[1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1] operator=class=Less name=Unnamed threshold=-3 maximumOuterSampling=250 maximumCoefficientOfVariation=0.1 maximumStandardDeviation=0 blockSize=4
DirectionalSampling result= probabilityEstimate=1.748122e-01 varianceEstimate=2.978217e-04 standard deviation=1.73e-02 coefficient of variation=9.87e-02 confidenceLength(0.95)=6.76e-02 outerSampling=30 blockSize=4
DirectionalSampling= class=DirectionalSampling rootStrategy=class=RootStrategy implementation=class=MediumSafe derived from class=RootStrategyImplementation solver=class=Solver implementation=class=Brent derived from class=SolverImplementation absoluteError=1e-05 relativeError=1e-05 residualError=1e-08 maximumFunctionEvaluation=100 usedFunctionEvaluation=0 maximumDistance=8 stepSize=1 samplingStrategy=class=SamplingStrategy implementation=class=OrthogonalDirection derived from class=SamplingStrategyImplementation dimension=4 size=1 derived from class=Simulation event=class=Event name=Unnamed implementation=class=EventRandomVectorImplementation antecedent=class=CompositeRandomVector function=class=NumericalMathFunction name=Unnamed implementation=class=NumericalMathFunctionImplementation name=Unnamed description=[E,F,L,I,d] evaluationImplementation=class=AnalyticalNumericalMathEvaluationImplementation name=Unnamed inputVariablesNames=[E,F,L,I] outputVariablesNames=[d] formulas=[-F*L^3/(3.*E*I)] gradientImplementation=class=AnalyticalNumericalMathGradientImplementation name=Unnamed evaluation=class=AnalyticalNumericalMathEvaluationImplementation name=Unnamed inputVariablesNames=[E,F,L,I] outputVariablesNames=[d] formulas=[-F*L^3/(3.*E*I)] hessianImplementation=class=AnalyticalNumericalMathHessianImplementation name=Unnamed evaluation=class=AnalyticalNumericalMathEvaluationImplementation name=Unnamed inputVariablesNames=[E,F,L,I] outputVariablesNames=[d] formulas=[-F*L^3/(3.*E*I)] antecedent=class=UsualRandomVector distribution=class=Normal name=Normal dimension=4 mean=class=NumericalPoint name=Unnamed dimension=4 values=[50,1,10,5] sigma=class=NumericalPoint name=Unnamed dimension=4 values=[1,1,1,1] correlationMatrix=class=CorrelationMatrix dimension=4 implementation=class=MatrixImplementation name=Unnamed rows=4 columns=4 values=[1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1] operator=class=Less name=Unnamed threshold=-3 maximumOuterSampling=250 maximumCoefficientOfVariation=0.1 maximumStandardDeviation=0 blockSize=4
DirectionalSampling result= probabilityEstimate=1.459781e-01 varianceEstimate=3.520986e-05 standard deviation=5.93e-03 coefficient of variation=4.06e-02 confidenceLength(0.95)=2.33e-02 outerSampling=1 blockSize=4