File: t_Dirichlet_std.py

package info (click to toggle)
openturns 1.7-3
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 38,588 kB
  • ctags: 26,495
  • sloc: cpp: 144,032; python: 26,855; ansic: 7,868; sh: 419; makefile: 263; yacc: 123; lex: 44
file content (108 lines) | stat: -rwxr-xr-x 4,246 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
#! /usr/bin/env python

from __future__ import print_function
from openturns import *

TESTPREAMBLE()
RandomGenerator.SetSeed(0)

try:
    # Instanciate one distribution object
    for dim in range(1, 5):
        theta = NumericalPoint(dim + 1)
        for i in range(dim + 1):
            theta[i] = (i + 1.0) / 4.0
        distribution = Dirichlet(theta)
        description = [''] * dim
        for j in range(1, dim + 1):
            oss = 'Marginal ' + str(j)
            description[j - 1] = oss
        distribution.setDescription(description)
        print("Distribution ", repr(distribution))
        print("Distribution ", distribution)

        # Is this distribution elliptical ?
        print("Elliptical = ", distribution.isElliptical())

        # Is this distribution continuous ?
        print("Continuous = ", distribution.isContinuous())

        # Test for realization of distribution
        oneRealization = distribution.getRealization()
        print("oneRealization=", repr(oneRealization))

        # Test for sampling
        size = 10000
        oneSample = distribution.getSample(size)
        print("oneSample first=", repr(
            oneSample[0]), " last=", repr(oneSample[size - 1]))
        print("mean=", repr(oneSample.computeMean()))
        print("covariance=", repr(oneSample.computeCovariance()))

        if (dim == 1):
            size = 100
            for i in range(2):
                RandomGenerator.SetSeed(0)
                msg = ''
                if FittingTest.Kolmogorov(distribution.getSample(size), distribution).getBinaryQualityMeasure():
                    msg = "accepted"
                else:
                    msg = "rejected"
                print(
                    "Kolmogorov test for the generator, sample size=", size, " is", msg)
                size *= 10

        # Define a point
        point = NumericalPoint(
            distribution.getDimension(), 0.5 / distribution.getDimension())
        print("Point= ", repr(point))

        # Show PDF and CDF of point
        LPDF = distribution.computeLogPDF(point)
        print("log pdf= %.8g" % LPDF)
        PDF = distribution.computePDF(point)
        print("pdf     = %.8g" % PDF)
        CDF = distribution.computeCDF(point)
        print("cdf= %.8g" % CDF)
        quantile = distribution.computeQuantile(0.95)
        print("quantile=", repr(quantile))
        print("cdf(quantile)= %.6f" % distribution.computeCDF(quantile))
        mean = distribution.getMean()
        print("mean=", repr(mean))
        standardDeviation = distribution.getStandardDeviation()
        print("standard deviation=", repr(standardDeviation))
        skewness = distribution.getSkewness()
        print("skewness=", repr(skewness))
        kurtosis = distribution.getKurtosis()
        print("kurtosis=", repr(kurtosis))
        covariance = distribution.getCovariance()
        print("covariance=", repr(covariance))
        # Extract the marginals
        for i in range(dim):
            margin = distribution.getMarginal(i)
            print("margin=", margin)
            print("margin PDF= %.8g" %
                  margin.computePDF(NumericalPoint(1, 0.5)))
            print("margin CDF= %.8g" %
                  margin.computeCDF(NumericalPoint(1, 0.5)))
            print("margin quantile=", repr(margin.computeQuantile(0.95)))
            print("margin realization=", repr(margin.getRealization()))
        if (dim >= 2):
            # Extract a 2-D marginal
            indices = Indices(2, 0)
            indices[0] = 1
            indices[1] = 0
            print("indices=", indices)
            margins = distribution.getMarginal(indices)
            print("margins=", margins)
            print("margins PDF=", margins.computePDF(NumericalPoint(2, 0.5)))
            print("margins CDF= %.8g" %
                  margins.computeCDF(NumericalPoint(2, 0.5)))
            quantile = margins.computeQuantile(0.95)
            print("margins quantile=", repr(quantile))
            print("margins CDF(quantile)= %.6f" % margins.computeCDF(quantile))
            print("margins realization=", repr(margins.getRealization()))

except:
    import sys
    print("t_Dirichlet_std.py", sys.exc_info()[0], sys.exc_info()[1])