1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
|
#! /usr/bin/env python
from __future__ import print_function
from openturns import *
from math import *
def printNumericalPoint(point, digits):
oss = "["
eps = pow(0.1, digits)
for i in range(point.getDimension()):
if i == 0:
sep = ""
else:
sep = ","
if fabs(point[i]) < eps:
oss += sep + '%.6f' % fabs(point[i])
else:
oss += sep + '%.6f' % point[i]
sep = ","
oss += "]"
return oss
TESTPREAMBLE()
try:
# We create a numerical math function
# Analytical construction
inputFunc = Description(2)
inputFunc[0] = "x0"
inputFunc[1] = "x1"
outputFunc = Description(1)
outputFunc[0] = "y0"
formulas = Description(outputFunc.getSize())
formulas[0] = "-(6+x0^2-x1)"
print("formulas=", formulas)
myFunction = NumericalMathFunction(inputFunc, outputFunc, formulas)
dim = myFunction.getInputDimension()
# We create a normal distribution point of dimension 1
mean = NumericalPoint(dim, 0.0)
# x0
mean[0] = 5.0
# x1
mean[1] = 2.1
sigma = NumericalPoint(dim, 0.0)
# x0
sigma[0] = 3.3
# x1
sigma[1] = 3.0
R = CorrelationMatrix(dim)
myDistribution = Normal(mean, sigma, R)
# we name the components of the distribution
componentDescription = Description(dim)
componentDescription[0] = "Marginal 1"
componentDescription[1] = "Marginal 2"
myDistribution.setDescription(componentDescription)
# We create a 'usual' RandomVector from the Distribution
vect = RandomVector(myDistribution)
# We create a composite random vector
output = RandomVector(myFunction, vect)
outputDescription = Description(1)
outputDescription[0] = "Interest Variable 1"
output.setDescription(outputDescription)
# We create an Event from this RandomVector
myEvent = Event(output, Greater(), 0.0)
# We create a NearestPoint algorithm
myCobyla = Cobyla()
myCobyla.setMaximumIterationNumber(200)
myCobyla.setMaximumAbsoluteError(1.0e-10)
myCobyla.setMaximumRelativeError(1.0e-10)
myCobyla.setMaximumResidualError(1.0e-10)
myCobyla.setMaximumConstraintError(1.0e-10)
print("myCobyla=", myCobyla)
# We create a FORM algorithm
# The first parameter is an OptimizationSolver
# The second parameter is an event
# The third parameter is a starting point for the design point research
myAlgo = FORM(myCobyla, myEvent, mean)
print("FORM=", myAlgo)
# Perform the simulation
myAlgo.run()
# Stream out the result
result = FORMResult(myAlgo.getResult())
digits = 5
print("importance factors=", printNumericalPoint(
result.getImportanceFactors(), digits))
# Graph 1 : Importance Factors graph
importanceFactorsGraph = result.drawImportanceFactors()
importanceFactorsGraph.draw("ImportanceFactorsDrawingFORM", 640, 480)
# Graph 2 : Hasofer Reliability Index Sensitivity Graphs graph
reliabilityIndexSensitivityGraphs = result.drawHasoferReliabilityIndexSensitivity(
)
graph2a = reliabilityIndexSensitivityGraphs[0]
graph2a.draw("HasoferReliabilityIndexMarginalSensitivityDrawing", 640, 480)
# Check that the correct files have been generated by computing their
# checksum
graph2b = reliabilityIndexSensitivityGraphs[1]
graph2b.draw("HasoferReliabilityIndexOtherSensitivityDrawing", 640, 480)
# Check that the correct files have been generated by computing their
# checksum
# Graph 3 : FORM Event Probability Sensitivity Graphs graph
eventProbabilitySensitivityGraphs = result.drawEventProbabilitySensitivity(
)
graph3a = eventProbabilitySensitivityGraphs[0]
graph3a.draw("EventProbabilityIndexMarginalSensitivityDrawing", 640, 480)
# Check that the correct files have been generated by computing their
# checksum
graph3b = eventProbabilitySensitivityGraphs[1]
graph3b.draw("EventProbabilityIndexOtherSensitivityDrawing", 640, 480)
# Check that the correct files have been generated by computing their
# checksum
# Graph 4 : Convergence history
graph4 = result.getOptimizationResult().drawErrorHistory()
graph4.draw("ConvergenceHistory", 640, 480)
except:
import sys
print("t_FORM_draw.py", sys.exc_info()[0], sys.exc_info()[1])
|