File: t_FORM_std.py

package info (click to toggle)
openturns 1.7-3
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 38,588 kB
  • ctags: 26,495
  • sloc: cpp: 144,032; python: 26,855; ansic: 7,868; sh: 419; makefile: 263; yacc: 123; lex: 44
file content (100 lines) | stat: -rwxr-xr-x 2,901 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
#! /usr/bin/env python

from __future__ import print_function
from openturns import *

from math import *

TESTPREAMBLE()


def printNumericalPoint(point, digits):
    oss = "["
    eps = pow(0.1, digits)
    for i in range(point.getDimension()):
        if i == 0:
            sep = ""
        else:
            sep = ","
        if fabs(point[i]) < eps:
            oss += sep + '%.6f' % fabs(point[i])
        else:
            oss += sep + '%.6f' % point[i]
        sep = ","
    oss += "]"
    return oss

try:

        # We create a numerical math function
    myFunction = NumericalMathFunction(
        ["E", "F", "L", "I"], ["d"], ["-F*L^3/(3*E*I)"])

    dim = myFunction.getInputDimension()

    # We create a normal distribution point of dimension 1
    mean = NumericalPoint(dim, 0.0)
    # E
    mean[0] = 50.0
    # F
    mean[1] = 1.0
    # L
    mean[2] = 10.0
    # I
    mean[3] = 5.0
    sigma = NumericalPoint(dim, 1.0)
    R = IdentityMatrix(dim)
    myDistribution = Normal(mean, sigma, R)

    # We create a 'usual' RandomVector from the Distribution
    vect = RandomVector(myDistribution)

    # We create a composite random vector
    output = RandomVector(myFunction, vect)

    # We create an Event from this RandomVector
    myEvent = Event(output, Less(), -3.0)

    # We create a NearestPoint algorithm
    myCobyla = Cobyla()
    myCobyla.setMaximumIterationNumber(400)
    myCobyla.setMaximumAbsoluteError(1.0e-10)
    myCobyla.setMaximumRelativeError(1.0e-10)
    myCobyla.setMaximumResidualError(1.0e-10)
    myCobyla.setMaximumConstraintError(1.0e-10)
    print("myCobyla=", myCobyla)

    # We create a FORM algorithm
    # The first parameter is an OptimizationSolver
    # The second parameter is an event
    # The third parameter is a starting point for the design point research
    myAlgo = FORM(myCobyla, myEvent, mean)

    print("FORM=", myAlgo)

    # Perform the simulation
    myAlgo.run()

    # Stream out the iresult
    result = myAlgo.getResult()
    digits = 5
    print("event probability=%.6f" % result.getEventProbability())
    print("generalized reliability index=%.6f" %
          result.getGeneralisedReliabilityIndex())
    print("standard space design point=", printNumericalPoint(
        result.getStandardSpaceDesignPoint(), digits))
    print("physical space design point=", printNumericalPoint(
        result.getPhysicalSpaceDesignPoint(), digits))

    # Is the standard point origin in failure space?
    print("is standard point origin in failure space? %s" %
          (result.getIsStandardPointOriginInFailureSpace() and "true" or "false"))

    print("importance factors=", printNumericalPoint(
        result.getImportanceFactors(), digits))
    print("Hasofer reliability index=%.6f" %
          result.getHasoferReliabilityIndex())

except:
    import sys
    print("t_FORM_std.py", sys.exc_info()[0], sys.exc_info()[1])