File: t_FittingTest_std.py

package info (click to toggle)
openturns 1.7-3
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 38,588 kB
  • ctags: 26,495
  • sloc: cpp: 144,032; python: 26,855; ansic: 7,868; sh: 419; makefile: 263; yacc: 123; lex: 44
file content (168 lines) | stat: -rwxr-xr-x 6,409 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
#! /usr/bin/env python

from __future__ import print_function
from openturns import *
from math import fabs

TESTPREAMBLE()
RandomGenerator.SetSeed(0)

try:

    continuousDistributionCollection = DistributionCollection()
    discreteDistributionCollection = DistributionCollection()
    distributionCollection = DistributionCollection()

    beta = Beta(2.0, 3.0, 0.0, 1.0)
    distributionCollection.add(beta)
    continuousDistributionCollection.add(beta)

    gamma = Gamma(1.0, 2.0, 3.0)
    distributionCollection.add(gamma)
    continuousDistributionCollection.add(gamma)

    gumbel = Gumbel(1.0, 2.0)
    distributionCollection.add(gumbel)
    continuousDistributionCollection.add(gumbel)

    lognormal = LogNormal(1.0, 1.0, 2.0)
    distributionCollection.add(lognormal)
    continuousDistributionCollection.add(lognormal)

    logistic = Logistic(1.0, 1.0)
    distributionCollection.add(logistic)
    continuousDistributionCollection.add(logistic)

    normal = Normal(1.0, 2.0)
    distributionCollection.add(normal)
    continuousDistributionCollection.add(normal)

    truncatednormal = TruncatedNormal(1.0, 1.0, 0.0, 3.0)
    distributionCollection.add(truncatednormal)
    continuousDistributionCollection.add(truncatednormal)

    student = Student(10.0, 10.0)
    distributionCollection.add(student)
    continuousDistributionCollection.add(student)

    triangular = Triangular(-1.0, 2.0, 4.0)
    distributionCollection.add(triangular)
    continuousDistributionCollection.add(triangular)

    uniform = Uniform(1.0, 2.0)
    distributionCollection.add(uniform)
    continuousDistributionCollection.add(uniform)

    weibull = Weibull(1.0, 1.0, 2.0)
    distributionCollection.add(weibull)
    continuousDistributionCollection.add(weibull)

    geometric = Geometric(0.5)
    distributionCollection.add(geometric)
    discreteDistributionCollection.add(geometric)

    poisson = Poisson(2.0)
    distributionCollection.add(poisson)
    discreteDistributionCollection.add(poisson)

    collection = UserDefinedPairCollection(
        3, UserDefinedPair(NumericalPoint(1), 0.0))

    point = NumericalPoint(1)
    point[0] = 1.0
    collection[0] = UserDefinedPair(point, 0.3)
    point[0] = 2.0
    collection[1] = UserDefinedPair(point, 0.2)
    point[0] = 3.0
    collection[2] = UserDefinedPair(point, 0.5)
    userdefined = UserDefined(collection)
    distributionCollection.add(userdefined)
    discreteDistributionCollection.add(userdefined)

    size = 100

    # Number of continuous distributions
    continuousDistributionNumber = continuousDistributionCollection.getSize()
    # Number of discrete distributions
    discreteDistributionNumber = discreteDistributionCollection.getSize()
    # Number of distributions
    distributionNumber = continuousDistributionNumber + \
        discreteDistributionNumber

    # We create a collection of NumericalSample of size "size" and of
    # dimension 1 (scalar values) : the collection has distributionNumber
    # NumericalSamples

    sampleCollection = [NumericalSample(size, 1)
                        for i in range(distributionNumber)]
    # We create a collection of NumericalSample of size "size" and of
    # dimension 1 (scalar values) : the collection has
    # continuousDistributionNumber NumericalSamples
    continuousSampleCollection = [NumericalSample(size, 1)
                                  for i in range(continuousDistributionNumber)]
    # We create a collection of NumericalSample of size "size" and of
    # dimension 1 (scalar values) : the collection has
    # discreteDistributionNumber NumericalSamples
    discreteSampleCollection = [NumericalSample(size, 1)
                                for i in range(discreteDistributionNumber)]

    for i in range(continuousDistributionNumber):
        continuousSampleCollection[
            i] = continuousDistributionCollection[i].getSample(size)
        continuousSampleCollection[i].setName(
            continuousDistributionCollection[i].getName())
        sampleCollection[i] = continuousSampleCollection[i]
    for i in range(discreteDistributionNumber):
        discreteSampleCollection[
            i] = discreteDistributionCollection[i].getSample(size)
        discreteSampleCollection[i].setName(
            discreteDistributionCollection[i].getName())
        sampleCollection[
            continuousDistributionNumber + i] = discreteSampleCollection[i]

    factoryCollection = DistributionFactoryCollection(3)
    factoryCollection[0] = UniformFactory()
    factoryCollection[1] = BetaFactory()
    factoryCollection[2] = NormalFactory()
    aSample = Uniform(-1.5, 2.5).getSample(size)
    model = FittingTest.BestModelBIC(aSample, factoryCollection)
    print("best model BIC=", repr(model))
    model, best_result = FittingTest.BestModelKolmogorov(
        aSample, factoryCollection)
    print("best model Kolmogorov=", repr(model))

    # BIC ranking
    resultBIC = SquareMatrix(distributionNumber)
    for i in range(distributionNumber):
        for j in range(distributionNumber):
            value = FittingTest.BIC(
                sampleCollection[i], distributionCollection[j], 0)
            resultBIC[i, j] = value
    print("resultBIC=", repr(resultBIC))

    # Kolmogorov ranking
    resultKolmogorov = SquareMatrix(continuousDistributionNumber)
    for i in range(continuousDistributionNumber):
        for j in range(continuousDistributionNumber):
            value = FittingTest.Kolmogorov(continuousSampleCollection[
                                           i], continuousDistributionCollection[j], 0.95, 0).getPValue()
            if (fabs(value) < 1.0e-6):
                value = 0.0
            resultKolmogorov[i, j] = value
    print("resultKolmogorov=", repr(resultKolmogorov))

    # ChiSquared ranking
    resultChiSquared = SquareMatrix(discreteDistributionNumber - 1)
    for i in range(discreteDistributionNumber - 1):
        for j in range(discreteDistributionNumber - 1):
            value = FittingTest.ChiSquared(discreteSampleCollection[
                                           i], discreteDistributionCollection[j], 0.95, 0).getPValue()
            if (fabs(value) < 1.0e-6):
                value = 0.0
            resultChiSquared[i, j] = value
    print("resultChiSquared=", repr(resultChiSquared))


except:
    import sys
    print("t_FittingTest_std.py", sys.exc_info()[0], sys.exc_info()[1])