1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
|
#! /usr/bin/env python
from __future__ import print_function
from openturns import *
from math import fabs
TESTPREAMBLE()
RandomGenerator.SetSeed(0)
try:
continuousDistributionCollection = DistributionCollection()
discreteDistributionCollection = DistributionCollection()
distributionCollection = DistributionCollection()
beta = Beta(2.0, 3.0, 0.0, 1.0)
distributionCollection.add(beta)
continuousDistributionCollection.add(beta)
gamma = Gamma(1.0, 2.0, 3.0)
distributionCollection.add(gamma)
continuousDistributionCollection.add(gamma)
gumbel = Gumbel(1.0, 2.0)
distributionCollection.add(gumbel)
continuousDistributionCollection.add(gumbel)
lognormal = LogNormal(1.0, 1.0, 2.0)
distributionCollection.add(lognormal)
continuousDistributionCollection.add(lognormal)
logistic = Logistic(1.0, 1.0)
distributionCollection.add(logistic)
continuousDistributionCollection.add(logistic)
normal = Normal(1.0, 2.0)
distributionCollection.add(normal)
continuousDistributionCollection.add(normal)
truncatednormal = TruncatedNormal(1.0, 1.0, 0.0, 3.0)
distributionCollection.add(truncatednormal)
continuousDistributionCollection.add(truncatednormal)
student = Student(10.0, 10.0)
distributionCollection.add(student)
continuousDistributionCollection.add(student)
triangular = Triangular(-1.0, 2.0, 4.0)
distributionCollection.add(triangular)
continuousDistributionCollection.add(triangular)
uniform = Uniform(1.0, 2.0)
distributionCollection.add(uniform)
continuousDistributionCollection.add(uniform)
weibull = Weibull(1.0, 1.0, 2.0)
distributionCollection.add(weibull)
continuousDistributionCollection.add(weibull)
geometric = Geometric(0.5)
distributionCollection.add(geometric)
discreteDistributionCollection.add(geometric)
poisson = Poisson(2.0)
distributionCollection.add(poisson)
discreteDistributionCollection.add(poisson)
collection = UserDefinedPairCollection(
3, UserDefinedPair(NumericalPoint(1), 0.0))
point = NumericalPoint(1)
point[0] = 1.0
collection[0] = UserDefinedPair(point, 0.3)
point[0] = 2.0
collection[1] = UserDefinedPair(point, 0.2)
point[0] = 3.0
collection[2] = UserDefinedPair(point, 0.5)
userdefined = UserDefined(collection)
distributionCollection.add(userdefined)
discreteDistributionCollection.add(userdefined)
size = 100
# Number of continuous distributions
continuousDistributionNumber = continuousDistributionCollection.getSize()
# Number of discrete distributions
discreteDistributionNumber = discreteDistributionCollection.getSize()
# Number of distributions
distributionNumber = continuousDistributionNumber + \
discreteDistributionNumber
# We create a collection of NumericalSample of size "size" and of
# dimension 1 (scalar values) : the collection has distributionNumber
# NumericalSamples
sampleCollection = [NumericalSample(size, 1)
for i in range(distributionNumber)]
# We create a collection of NumericalSample of size "size" and of
# dimension 1 (scalar values) : the collection has
# continuousDistributionNumber NumericalSamples
continuousSampleCollection = [NumericalSample(size, 1)
for i in range(continuousDistributionNumber)]
# We create a collection of NumericalSample of size "size" and of
# dimension 1 (scalar values) : the collection has
# discreteDistributionNumber NumericalSamples
discreteSampleCollection = [NumericalSample(size, 1)
for i in range(discreteDistributionNumber)]
for i in range(continuousDistributionNumber):
continuousSampleCollection[
i] = continuousDistributionCollection[i].getSample(size)
continuousSampleCollection[i].setName(
continuousDistributionCollection[i].getName())
sampleCollection[i] = continuousSampleCollection[i]
for i in range(discreteDistributionNumber):
discreteSampleCollection[
i] = discreteDistributionCollection[i].getSample(size)
discreteSampleCollection[i].setName(
discreteDistributionCollection[i].getName())
sampleCollection[
continuousDistributionNumber + i] = discreteSampleCollection[i]
factoryCollection = DistributionFactoryCollection(3)
factoryCollection[0] = UniformFactory()
factoryCollection[1] = BetaFactory()
factoryCollection[2] = NormalFactory()
aSample = Uniform(-1.5, 2.5).getSample(size)
model = FittingTest.BestModelBIC(aSample, factoryCollection)
print("best model BIC=", repr(model))
model, best_result = FittingTest.BestModelKolmogorov(
aSample, factoryCollection)
print("best model Kolmogorov=", repr(model))
# BIC ranking
resultBIC = SquareMatrix(distributionNumber)
for i in range(distributionNumber):
for j in range(distributionNumber):
value = FittingTest.BIC(
sampleCollection[i], distributionCollection[j], 0)
resultBIC[i, j] = value
print("resultBIC=", repr(resultBIC))
# Kolmogorov ranking
resultKolmogorov = SquareMatrix(continuousDistributionNumber)
for i in range(continuousDistributionNumber):
for j in range(continuousDistributionNumber):
value = FittingTest.Kolmogorov(continuousSampleCollection[
i], continuousDistributionCollection[j], 0.95, 0).getPValue()
if (fabs(value) < 1.0e-6):
value = 0.0
resultKolmogorov[i, j] = value
print("resultKolmogorov=", repr(resultKolmogorov))
# ChiSquared ranking
resultChiSquared = SquareMatrix(discreteDistributionNumber - 1)
for i in range(discreteDistributionNumber - 1):
for j in range(discreteDistributionNumber - 1):
value = FittingTest.ChiSquared(discreteSampleCollection[
i], discreteDistributionCollection[j], 0.95, 0).getPValue()
if (fabs(value) < 1.0e-6):
value = 0.0
resultChiSquared[i, j] = value
print("resultChiSquared=", repr(resultChiSquared))
except:
import sys
print("t_FittingTest_std.py", sys.exc_info()[0], sys.exc_info()[1])
|