File: t_GeneralizedLinearModelAlgorithm_nlopt.py

package info (click to toggle)
openturns 1.7-3
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 38,588 kB
  • ctags: 26,495
  • sloc: cpp: 144,032; python: 26,855; ansic: 7,868; sh: 419; makefile: 263; yacc: 123; lex: 44
file content (43 lines) | stat: -rwxr-xr-x 1,549 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
#! /usr/bin/env python

from __future__ import print_function
import openturns as ot
from openturns.testing import assert_almost_equal

ot.TESTPREAMBLE()

try:

    # Set precision
    ot.PlatformInfo.SetNumericalPrecision(3)

    print("================")
    print("Test using NLOpt")
    print("================")
    # Calibration of default optimizer
    ot.ResourceMap.SetAsNumericalScalar('GeneralizedLinearModelAlgorithm-DefaultOptimizationLowerBound', 1.0e-5)
    ot.ResourceMap.SetAsNumericalScalar('GeneralizedLinearModelAlgorithm-DefaultOptimizationUpperBound', 100)
    # Data & estimation
    spatialDimension = 1
    X = ot.Normal().getSample(100)
    X = X.sortAccordingToAComponent(0)
    covarianceModel = ot.SquaredExponential( [1.0], [1.0])
    model = ot.NumericalMathFunction(["x"], ["x - 0.6 * cos(x/3)"])
    Y = model(X)
    basis = ot.QuadraticBasisFactory(spatialDimension).build()
    algo = ot.GeneralizedLinearModelAlgorithm(X, Y, covarianceModel, basis)
    algo.setOptimizationSolver(ot.NelderMead())
    algo.run()

    # perform an evaluation
    result = algo.getResult()
    metaModel = result.getMetaModel()
    conditionalCovariance = result.getCovarianceModel()
    residual = metaModel(X) - Y
    assert_almost_equal(residual.computeCenteredMoment(2), [1.06e-05], 1e-5, 1e-5)
    assert_almost_equal(conditionalCovariance.getParameter(), [0.702138,0.00137], 2e-3, 1e-3)
    print("Test Ok")

except:
    import sys
    print("t_GeneralizedLinearModelAlgorithm_nlopt.py", sys.exc_info()[0], sys.exc_info()[1])