File: t_ImportanceSampling_std.py

package info (click to toggle)
openturns 1.7-3
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 38,588 kB
  • ctags: 26,495
  • sloc: cpp: 144,032; python: 26,855; ansic: 7,868; sh: 419; makefile: 263; yacc: 123; lex: 44
file content (61 lines) | stat: -rwxr-xr-x 1,626 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
#! /usr/bin/env python

from __future__ import print_function
from openturns import *

TESTPREAMBLE()
RandomGenerator.SetSeed(0)

try:

    # We create a numerical math function
    myFunction = NumericalMathFunction(
        ('E', 'F', 'L', 'I'), ('d',), ('-F*L^3/(3.*E*I)',))

    dim = myFunction.getInputDimension()

    # We create a normal distribution point of dimension 1
    mean = NumericalPoint(dim, 0.0)
    # E
    mean[0] = 50.0
    # F
    mean[1] = 1.0
    # L
    mean[2] = 10.0
    # I
    mean[3] = 5.0
    sigma = NumericalPoint(dim, 1.0)
    R = IdentityMatrix(dim)
    myDistribution = Normal(mean, sigma, R)

    # We create a 'usual' RandomVector from the Distribution
    vect = RandomVector(myDistribution)

    # We create a composite random vector
    output = RandomVector(myFunction, vect)

    # We create an Event from this RandomVector
    myEvent = Event(output, Less(), -3)

    # We create an importance sampling Carlo algorithm */
    mean[0] = 4.99689645939288809018e+01
    mean[1] = 1.84194175946153282375e+00
    mean[2] = 1.04454036676956398821e+01
    mean[3] = 4.66776215562709406726e+00
    myImportance = Normal(mean, sigma, R)
    myAlgo = ImportanceSampling(myEvent, myImportance)
    myAlgo.setMaximumOuterSampling(250)
    myAlgo.setBlockSize(4)
    myAlgo.setMaximumCoefficientOfVariation(0.1)

    print("ImportanceSampling=", myAlgo)

    # Perform the simulation
    myAlgo.run()

    # Stream out the result
    print("ImportanceSampling result=", myAlgo.getResult())

except:
    import sys
    print("t_ImportanceSampling_std.py", sys.exc_info()[0], sys.exc_info()[1])