1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
|
#! /usr/bin/env python
from __future__ import print_function
from openturns import *
TESTPREAMBLE()
RandomGenerator.SetSeed(0)
try:
# Instanciate one distribution object
dim = 3
copula = IndependentCopula(dim)
print("Copula =", repr(copula))
print("Copula =", copula)
# Is this copula an elliptical distribution?
print("Elliptical distribution = ", copula.isElliptical())
# Is this copula continuous ?
print("Continuous copula = ", copula.isContinuous())
# Is this copula elliptical ?
print("Elliptical copula = ", copula.hasEllipticalCopula())
# Is this copula independant ?
print("hasIndependentCopula = ", copula.hasIndependentCopula())
# Test for realization of copula
oneRealization = copula.getRealization()
print("oneRealization=", repr(oneRealization))
# Test for sampling
size = 10000
oneSample = copula.getSample(size)
print("oneSample first=", repr(
oneSample[0]), " last=", repr(oneSample[size - 1]))
print("mean=", repr(oneSample.computeMean()))
print("covariance=", repr(oneSample.computeCovariance()))
# Define a point
point = NumericalPoint(copula.getDimension(), 0.6)
print("Point= ", repr(point))
# Show PDF and CDF of point
# derivative of PDF with regards its arguments
DDF = copula.computeDDF(point)
print("ddf =", repr(DDF))
# PDF value
PDF = copula.computePDF(point)
print("pdf =%.6f" % PDF)
# CDF value
CDF = copula.computeCDF(point)
print("cdf=%.6f" % CDF)
# derivative of the PDF with regards the parameters of the distribution
PDFgr = copula.computePDFGradient(point)
print("pdf gradient =", repr(PDFgr))
# derivative of the CDF with regards the parameters of the distribution
CDFgr = copula.computeCDFGradient(point)
print("cdf gradient =", repr(CDFgr))
# quantile
quantile = copula.computeQuantile(0.95)
print("quantile=", repr(quantile))
print("cdf(quantile)=%.6f" % copula.computeCDF(quantile))
# mean
mean = copula.getMean()
print("mean=", repr(mean))
# covariance
covariance = copula.getCovariance()
print("covariance=", repr(covariance))
# parameters of the distribution
parameters = copula.getParametersCollection()
print("parameters=", repr(parameters))
# Specific to this copula
# Extract the marginals
for i in range(dim):
margin = copula.getMarginal(i)
print("margin=", repr(margin))
print("margin PDF=%.6f" % margin.computePDF(NumericalPoint(1, 0.25)))
print("margin CDF=%.6f" % margin.computeCDF(NumericalPoint(1, 0.25)))
print("margin quantile=", repr(margin.computeQuantile(0.95)))
print("margin realization=", repr(margin.getRealization()))
# Extract a 2-D marginal
indices = Indices(2, 0)
indices[0] = 1
indices[1] = 0
print("indices=", repr(indices))
margins = copula.getMarginal(indices)
print("margins=", repr(margins))
print("margins PDF=%.6f" % margins.computePDF(NumericalPoint(2, 0.25)))
print("margins CDF=%.6f" % margins.computeCDF(NumericalPoint(2, 0.25)))
quantile = margins.computeQuantile(0.95)
print("margins quantile=", repr(quantile))
print("margins CDF(quantile)=%.6f" % margins.computeCDF(quantile))
print("margins realization=", repr(margins.getRealization()))
except:
import sys
print("t_IndependantCopula.py", sys.exc_info()[0], sys.exc_info()[1])
|