File: t_IsoProbabilisticTransformation_EllipticalCopula.py

package info (click to toggle)
openturns 1.7-3
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 38,588 kB
  • ctags: 26,495
  • sloc: cpp: 144,032; python: 26,855; ansic: 7,868; sh: 419; makefile: 263; yacc: 123; lex: 44
file content (232 lines) | stat: -rwxr-xr-x 9,569 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
#! /usr/bin/env python

from __future__ import print_function
from openturns import *
from math import *

TESTPREAMBLE()
RandomGenerator.SetSeed(0)


def cleanSymmetricTensor(inSymmetricTensor):
    rowDim = inSymmetricTensor.getNbRows()
    colDim = inSymmetricTensor.getNbColumns()
    sheetDim = inSymmetricTensor.getNbSheets()
    for i in range(rowDim):
        for j in range(colDim):
            for k in range(sheetDim):
                inSymmetricTensor[i, j, k] = 1.e-4 * round(
                    1.e4 * inSymmetricTensor[i, j, k])
                if (abs(inSymmetricTensor[i, j, k]) < 1.e-6):
                    inSymmetricTensor[i, j, k] = 0.0
    return inSymmetricTensor

try:
    # Create a collection of distribution
    aCollection = DistributionCollection()

    aCollection.add(Uniform(-1.0, 2.0))
    aCollection.add(Gamma(2.0, 2.0, 0.0))

    dim = aCollection.getSize()

    # Create a copula
    RCopula = CorrelationMatrix(dim)
    for i in range(dim):
        for j in range(i):
            RCopula[i, j] = (i + j + 1.0) / (2.0 * dim)

    # Instanciate one distribution object
    distribution = ComposedDistribution(aCollection, NormalCopula(RCopula))
    # Test for sampling
    size = 10000
    sample = distribution.getSample(size)
    print("sample first=", repr(sample[0]), " last=", repr(sample[size - 1]))
    print("sample mean=", repr(sample.computeMean()))
    print("sample covariance=", repr(sample.computeCovariance()))

    transform = distribution.getIsoProbabilisticTransformation()
    print("isoprobabilistic transformation=", repr(transform))
    transformedSample = transform(sample)
    print("transformed sample first=", repr(
        transformedSample[0]), " last=", repr(transformedSample[size - 1]))
    print("transformed sample mean=", repr(transformedSample.computeMean()))
    print("transformed sample covariance=", repr(
        transformedSample.computeCovariance()))

    # Test for evaluation
    inverseTransform = distribution.getInverseIsoProbabilisticTransformation()
    print("inverse isoprobabilistic transformation=", repr(inverseTransform))
    transformedBackSample = inverseTransform(transformedSample)
    print("transformed back sample first=", repr(
        transformedBackSample[0]), " last=", repr(transformedBackSample[size - 1]))
    print("transformed back sample mean=", repr(
        transformedBackSample.computeMean()))
    print("transformed back sample covariance=", repr(
        transformedBackSample.computeCovariance()))
    point = NumericalPoint(dim, 1.0)
    print("point=", repr(point))
    transformedPoint = transform(point)
    print("transform value at point        =", repr(transformedPoint))
    print("transform gradient at point     =", repr(
        transform.gradient(point).clean(1e-6)))
    print("transform gradient at point (FD)=", repr(CenteredFiniteDifferenceGradient(
        1.0e-5, transform.getEvaluation()).gradient(point).clean(1e-6)))
    print("transform hessian at point      =", repr(
        cleanSymmetricTensor(transform.hessian(point))))
    print("transform hessian at point (FD) =", repr(cleanSymmetricTensor(
        CenteredFiniteDifferenceHessian(1.0e-4, transform.getEvaluation()).hessian(point))))
    print("inverse transform value at transformed point        =",
          repr(inverseTransform(transformedPoint)))
    print("inverse transform gradient at transformed point     =", repr(
        inverseTransform.gradient(transformedPoint).clean(1e-6)))
    print("inverse transform gradient at transformed point (FD)=", repr(CenteredFiniteDifferenceGradient(
        1.0e-5, inverseTransform.getEvaluation()).gradient(transformedPoint).clean(1e-6)))
    print("inverse transform hessian at transformed point      =", repr(
        cleanSymmetricTensor(inverseTransform.hessian(transformedPoint))))
    print("inverse transform hessian at transformed point (FD) =", repr(cleanSymmetricTensor(
        CenteredFiniteDifferenceHessian(1.0e-4, inverseTransform.getEvaluation()).hessian(transformedPoint))))

    # Test for parameters
    print("parameters gradient at point=", repr(
        transform.parameterGradient(point)))

    # Validation using finite difference
    eps = 1e-5
    factor = 1.0 / (2.0 * eps)
    gradient = Matrix(5, 2)

    # dT/dp0
    coll = DistributionCollection(dim)
    coll[0] = Uniform(-1.0 + eps, 2.0)
    coll[1] = aCollection[1]
    left = ComposedDistribution(
        coll, NormalCopula(RCopula)).getIsoProbabilisticTransformation()
    coll[0] = Uniform(-1.0 - eps, 2.0)
    right = ComposedDistribution(
        coll, NormalCopula(RCopula)).getIsoProbabilisticTransformation()
    dTdp = (left(point) - right(point)) * factor
    gradient[0, 0] = dTdp[0]
    gradient[0, 1] = dTdp[1]
    # dT/dp1
    coll = DistributionCollection(dim)
    coll[0] = Uniform(-1.0, 2.0 + eps)
    coll[1] = aCollection[1]
    left = ComposedDistribution(
        coll, NormalCopula(RCopula)).getIsoProbabilisticTransformation()
    coll[0] = Uniform(-1.0, 2.0 - eps)
    right = ComposedDistribution(
        coll, NormalCopula(RCopula)).getIsoProbabilisticTransformation()
    dTdp = (left(point) - right(point)) * factor
    gradient[1, 0] = dTdp[0]
    gradient[1, 1] = dTdp[1]
    # dT/dp2
    coll = DistributionCollection(dim)
    coll[0] = aCollection[0]
    coll[1] = Gamma(2.0 + eps, 2.0, 0.0)
    left = ComposedDistribution(
        coll, NormalCopula(RCopula)).getIsoProbabilisticTransformation()
    coll[1] = Gamma(2.0 - eps, 2.0, 0.0)
    right = ComposedDistribution(
        coll, NormalCopula(RCopula)).getIsoProbabilisticTransformation()
    dTdp = (left(point) - right(point)) * factor
    gradient[2, 0] = dTdp[0]
    gradient[2, 1] = dTdp[1]
    # dT/dp3
    coll = DistributionCollection(dim)
    coll[0] = aCollection[0]
    coll[1] = Gamma(2.0, 2.0 + eps, 0.0)
    left = ComposedDistribution(
        coll, NormalCopula(RCopula)).getIsoProbabilisticTransformation()
    coll[1] = Gamma(2.0, 2.0 - eps, 0.0)
    right = ComposedDistribution(
        coll, NormalCopula(RCopula)).getIsoProbabilisticTransformation()
    dTdp = (left(point) - right(point)) * factor
    gradient[3, 0] = dTdp[0]
    gradient[3, 1] = dTdp[1]
    # dT/dp4
    coll = DistributionCollection(dim)
    coll[0] = aCollection[0]
    coll[1] = Gamma(2.0, 2.0, 0.0 + eps)
    left = ComposedDistribution(
        coll, NormalCopula(RCopula)).getIsoProbabilisticTransformation()
    coll[1] = Gamma(2.0, 2.0, 0.0 - eps)
    right = ComposedDistribution(
        coll, NormalCopula(RCopula)).getIsoProbabilisticTransformation()
    dTdp = (left(point) - right(point)) * factor
    gradient[4, 0] = dTdp[0]
    gradient[4, 1] = dTdp[1]

    print("parameters gradient (FD)    =", repr(gradient))

    # Test for parameters
    print("(inverse) parameters gradient at point=", repr(
        inverseTransform.parameterGradient(point)))

    # dT/dp0
    coll = DistributionCollection(dim)
    coll[0] = Uniform(-1.0 + eps, 2.0)
    coll[1] = aCollection[1]
    left = ComposedDistribution(
        coll, NormalCopula(RCopula)).getInverseIsoProbabilisticTransformation()
    coll[0] = Uniform(-1.0 - eps, 2.0)
    right = ComposedDistribution(
        coll, NormalCopula(RCopula)).getInverseIsoProbabilisticTransformation()
    dTdp = (left(point) - right(point)) * factor
    gradient[0, 0] = dTdp[0]
    gradient[0, 1] = dTdp[1]
    # dT/dp1
    coll = DistributionCollection(dim)
    coll[0] = Uniform(-1.0, 2.0 + eps)
    coll[1] = aCollection[1]
    left = ComposedDistribution(
        coll, NormalCopula(RCopula)).getInverseIsoProbabilisticTransformation()
    coll[0] = Uniform(-1.0, 2.0 - eps)
    right = ComposedDistribution(
        coll, NormalCopula(RCopula)).getInverseIsoProbabilisticTransformation()
    dTdp = (left(point) - right(point)) * factor
    gradient[1, 0] = dTdp[0]
    gradient[1, 1] = dTdp[1]
    # dT/dp2
    coll = DistributionCollection(dim)
    coll[0] = aCollection[0]
    coll[1] = Gamma(2.0 + eps, 2.0, 0.0)
    left = ComposedDistribution(
        coll, NormalCopula(RCopula)).getInverseIsoProbabilisticTransformation()
    coll[1] = Gamma(2.0 - eps, 2.0, 0.0)
    right = ComposedDistribution(
        coll, NormalCopula(RCopula)).getInverseIsoProbabilisticTransformation()
    dTdp = (left(point) - right(point)) * factor
    gradient[2, 0] = dTdp[0]
    gradient[2, 1] = dTdp[1]
    # dT/dp3
    coll = DistributionCollection(dim)
    coll[0] = aCollection[0]
    coll[1] = Gamma(2.0, 2.0 + eps, 0.0)
    left = ComposedDistribution(
        coll, NormalCopula(RCopula)).getInverseIsoProbabilisticTransformation()
    coll[1] = Gamma(2.0, 2.0 - eps, 0.0)
    right = ComposedDistribution(
        coll, NormalCopula(RCopula)).getInverseIsoProbabilisticTransformation()
    dTdp = (left(point) - right(point)) * factor
    gradient[3, 0] = dTdp[0]
    gradient[3, 1] = dTdp[1]
    # dT/dp4
    coll = DistributionCollection(dim)
    coll[0] = aCollection[0]
    coll[1] = Gamma(2.0, 2.0, 0.0 + eps)
    left = ComposedDistribution(
        coll, NormalCopula(RCopula)).getInverseIsoProbabilisticTransformation()
    coll[1] = Gamma(2.0, 2.0, 0.0 - eps)
    right = ComposedDistribution(
        coll, NormalCopula(RCopula)).getInverseIsoProbabilisticTransformation()
    dTdp = (left(point) - right(point)) * factor
    gradient[4, 0] = dTdp[0]
    gradient[4, 1] = dTdp[1]

    print("(inverse) parameters gradient (FD)    =", repr(gradient))

except:
    import sys
    print("t_IsoProbabilisticTransformation_EllipticalCopula.py",
          sys.exc_info()[0], sys.exc_info()[1])