File: t_KPermutationsDistribution_std.py

package info (click to toggle)
openturns 1.7-3
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 38,588 kB
  • ctags: 26,495
  • sloc: cpp: 144,032; python: 26,855; ansic: 7,868; sh: 419; makefile: 263; yacc: 123; lex: 44
file content (56 lines) | stat: -rwxr-xr-x 1,806 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
#! /usr/bin/env python

from __future__ import print_function
from openturns import *

TESTPREAMBLE()
RandomGenerator.SetSeed(0)

try:
    # Instanciate one distribution object
    distribution = KPermutationsDistribution(5, 12)
    print("Distribution ", distribution)

    # Is this distribution elliptical ?
    print("Elliptical = ", distribution.isElliptical())

    # Is this distribution continuous ?
    print("Continuous = ", distribution.isContinuous())

    # Test for realization of distribution
    oneRealization = distribution.getRealization()
    print("oneRealization=", oneRealization)

    # Test for sampling
    size = 10000
    oneSample = distribution.getSample(size)
    print("oneSample first=", oneSample[0], " last=", oneSample[size - 1])
    print("mean=", oneSample.computeMean())
    print("covariance=", oneSample.computeCovariance())
    # Define a point
    point = NumericalPoint(distribution.getDimension(), 4.0)
    print("Point= ", point)

    # Show PDF and CDF of point
    LPDF = distribution.computeLogPDF(point)
    print("log pdf=", LPDF)
    PDF = distribution.computePDF(point)
    print("pdf     =", PDF)
    CDF = distribution.computeCDF(point)
    print("cdf=%.6f" % CDF)
    CCDF = distribution.computeComplementaryCDF(point)
    print("ccdf=%.6f" % CCDF)
    quantile = distribution.computeQuantile(0.95)
    print("quantile=", quantile)
    print("cdf(quantile)=", distribution.computeCDF(quantile))
    mean = distribution.getMean()
    print("mean=", mean)
    covariance = distribution.getCovariance()
    print("covariance=", covariance)
    parameters = distribution.getParametersCollection()
    print("parameters=", parameters)

except:
    import sys
    print("t_KPermutationsDistribution_std.py",
          sys.exc_info()[0], sys.exc_info()[1])