File: t_KrigingAlgorithm_std.py

package info (click to toggle)
openturns 1.7-3
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 38,588 kB
  • ctags: 26,495
  • sloc: cpp: 144,032; python: 26,855; ansic: 7,868; sh: 419; makefile: 263; yacc: 123; lex: 44
file content (106 lines) | stat: -rwxr-xr-x 2,861 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
#! /usr/bin/env python

from __future__ import print_function
from openturns import *
from openturns.testing import *

TESTPREAMBLE()

# Test 1

sampleSize = 6
dimension = 1

f = NumericalMathFunction(['x0'], ['y'], ['x0 * sin(x0)'])

X = NumericalSample(sampleSize, dimension)
X2 = NumericalSample(sampleSize, dimension)
for i in range(sampleSize):
    X[i, 0] = 3.0 + i
    X2[i, 0] = 2.5 + i
X[0, 0] = 1.0
X[1, 0] = 3.0
X2[0, 0] = 2.0
X2[1, 0] = 4.0
Y = f(X)
Y2 = f(X2)

# create algorithm
basis = ConstantBasisFactory(dimension).build()
covarianceModel = SquaredExponential([1e-05], [4.11749])

algo = KrigingAlgorithm(X, Y, basis, covarianceModel)
algo.run()

# perform an evaluation
result = algo.getResult()
print("X=", X)
print("f(X)=", Y)

assert_almost_equal(result.getMetaModel()(X), Y)
assert_almost_equal(result.getResiduals(), [1.32804e-07], 1e-3, 1e-3)
assert_almost_equal(result.getRelativeErrors(), [5.20873e-21])

# Kriging variance is 0 on learning points
var = result.getConditionalCovariance(X)

# assert_almost_equal could not be applied to matrices
# application to NumericalPoint
covariancePoint = NumericalPoint(var.getImplementation())
theoricalVariance = NumericalPoint(sampleSize * sampleSize)
assert_almost_equal(covariancePoint, theoricalVariance, 8.95e-7, 8.95e-7)

# Test 2

# Kriging use case
spatialDimension = 2

# Learning data
levels = [8, 5]
box = Box(levels)
inputSample = box.generate()
# Scale each direction
inputSample *= 10.0


model = NumericalMathFunction(['x', 'y'], ['z'], ['cos(0.5*x) + sin(y)'])
outputSample = model(inputSample)

# Validation
sampleSize = 10
inputValidSample = ComposedDistribution(2 * [Uniform(0, 10.0)]).getSample(sampleSize)
outputValidSample = model(inputValidSample)

# 2) Definition of exponential model
# The parameters have been calibrated using TNC optimization
# and AbsoluteExponential models
covarianceModel = SquaredExponential([1.98824,0.924731], [3.15352])

# 3) Basis definition
basisCollection = BasisCollection(1, ConstantBasisFactory(spatialDimension).build())

# Kriring algorithm
algo = KrigingAlgorithm(inputSample, outputSample, basisCollection, covarianceModel)
algo.run()
result = algo.getResult()
# Get meta model
metaModel = result.getMetaModel()
outData = metaModel(inputValidSample)


# 4) Errors
# Interpolation
assert_almost_equal(outputSample,  metaModel(inputSample), 3.0e-5, 3.0e-5)


# 5) Kriging variance is 0 on learning points
var = result.getConditionalCovariance(inputSample)

# assert_almost_equal could not be applied to matrices
# application to NumericalPoint
covariancePoint = NumericalPoint(var.getImplementation())
theoricalVariance = NumericalPoint(covariancePoint.getSize(), 0.0)
assert_almost_equal(covariancePoint, theoricalVariance, 7e-7, 7e-7)

# Estimation
assert_almost_equal(outputValidSample,  metaModel(inputValidSample), 1.e-1, 1e-1)