File: t_LAR_std.py

package info (click to toggle)
openturns 1.7-3
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 38,588 kB
  • ctags: 26,495
  • sloc: cpp: 144,032; python: 26,855; ansic: 7,868; sh: 419; makefile: 263; yacc: 123; lex: 44
file content (86 lines) | stat: -rwxr-xr-x 2,888 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
#! /usr/bin/env python

from __future__ import print_function
from openturns import *
from math import *

TESTPREAMBLE()

try:
    #Log.Show( Log.Flags() | Log.INFO )

    # Problem parameters
    dimension = 3
    a = 7.0
    b = 0.1
    # Reference analytical values
    meanTh = a / 2
    covTh = (b ** 2 * pi ** 8) / 18.0 + \
        (b * pi ** 4) / 5.0 + (a ** 2) / 8.0 + 1.0 / 2.0
    sob_1 = [(b * pi ** 4 / 5.0 + b ** 2 * pi ** 8 / 50.0 + 1.0 / 2.0)
             / covTh, (a ** 2 / 8.0) / covTh, 0.0]
    sob_2 = [
        0.0, (b ** 2 * pi ** 8 / 18.0 - b ** 2 * pi ** 8 / 50.0) / covTh, 0.0]
    sob_3 = [0.0]
    sob_T1 = [sob_1[0] + sob_2[0] + sob_2[1] + sob_3[0], sob_1[1] + sob_2[0]
              + sob_2[2] + sob_3[0], sob_1[2] + sob_2[1] + sob_2[2] + sob_3[0]]
    sob_T2 = [sob_2[0] + sob_2[1] + sob_3[0], sob_2[0]
              + sob_2[2] + sob_3[0], sob_2[1] + sob_2[2] + sob_3[0]]
    sob_T3 = [sob_3[0]]
    # Create the Ishigami function
    model = NumericalMathFunction(['xi1', 'xi2', 'xi3'], ['y'], [
                                  "sin(xi1) + (" + str(a) + ") * (sin(xi2)) ^ 2 + (" + str(b) + ") * xi3^4 * sin(xi1)"])

    # Create the input distribution
    marginalX = DistributionCollection(dimension)
    for i in range(dimension):
        marginalX[i] = Uniform(-pi, pi)
    distribution = Distribution(ComposedDistribution(marginalX))

    # Create the orthogonal basis
    polynomialCollection = PolynomialFamilyCollection(dimension)
    for i in range(dimension):
        polynomialCollection[
            i] = OrthogonalUniVariatePolynomialFamily(LegendreFactory())
    enumerateFunction = LinearEnumerateFunction(dimension)
    productBasis = OrthogonalBasis(
        OrthogonalProductPolynomialFactory(polynomialCollection, enumerateFunction))

    # design experiment
    samplingSize = 75
    experiment = Experiment(LowDiscrepancyExperiment(
        SobolSequence(dimension), distribution, samplingSize))

    # iso transfo
    algo = FunctionalChaosAlgorithm(model, distribution, AdaptiveStrategy(
        FixedStrategy(productBasis, enumerateFunction.getStrataCumulatedCardinal(1))))
    algo.run()
    result = algo.getResult()
    xToU = result.getTransformation()

    # generate samples
    x = experiment.generate()
    u = xToU(x)
    y = model(x)

    # build basis
    degree = 10
    basisSize = enumerateFunction.getStrataCumulatedCardinal(degree)
    basis = Basis()
    for i in range(basisSize):
        basis.add(productBasis.build(i))

    # run algorithm
    factory = BasisSequenceFactory(LAR())
    factory.setVerbose(True)
    print("factory = ", factory)

    seq = factory.build(u, y, basis, list(range(basisSize)))

    first = 20
    if (seq.getSize() >= first):
        print("first ", first, " indices = ", seq.getIndices(first - 1))

except:
    import sys
    print("t_LAR.py", sys.exc_info()[0], sys.exc_info()[1])