File: t_LevelSet_std.expout

package info (click to toggle)
openturns 1.7-3
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 38,588 kB
  • ctags: 26,495
  • sloc: cpp: 144,032; python: 26,855; ansic: 7,868; sh: 419; makefile: 263; yacc: 123; lex: 44
file content (158 lines) | stat: -rw-r--r-- 3,832 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
levelSet1= {x | f(x) <= 1} with f=
NumericalMathFunction :
  input  : [x,y]
  output : [y0]
  evaluation :   x^4 + y^4
  gradient   :   
  | d(y0) / d(x) = 4*x^3 
  | d(y0) / d(y) = 4*y^3 

  hessian    :   
  |   d^2(y0) / d(x)^2 = 12*x^2 
  | d^2(y0) / d(y)d(x) = 0 
  |   d^2(y0) / d(y)^2 = 12*y^2 

levelSet1 contains  [-0.5, -0.5] ?  True
levelSet1 contains  [0.5, 0.0] ?  True
levelSet1 contains  [1.5, 0.0] ?  False
levelSet2= {x | f(x) <= 1} with f=
NumericalMathFunction :
  input  : [x,y]
  output : [y0]
  evaluation :   (x-1)^2 + y^2
  gradient   :   
  | d(y0) / d(x) = (-2)+(2*x) 
  | d(y0) / d(y) = 2*y 

  hessian    :   
  |   d^2(y0) / d(x)^2 = 2 
  | d^2(y0) / d(y)d(x) = 0 
  |   d^2(y0) / d(y)^2 = 2 

levelSet2 contains  [-0.5, -0.5] ?  False
levelSet2 contains  [0.5, 0.0] ?  True
levelSet2 contains  [1.5, 0.0] ?  True
intersection of  {x | f(x) <= 1} with f=
NumericalMathFunction :
  input  : [x,y]
  output : [y0]
  evaluation :   x^4 + y^4
  gradient   :   
  | d(y0) / d(x) = 4*x^3 
  | d(y0) / d(y) = 4*y^3 

  hessian    :   
  |   d^2(y0) / d(x)^2 = 12*x^2 
  | d^2(y0) / d(y)d(x) = 0 
  |   d^2(y0) / d(y)^2 = 12*y^2 
  and  {x | f(x) <= 1} with f=
NumericalMathFunction :
  input  : [x,y]
  output : [y0]
  evaluation :   (x-1)^2 + y^2
  gradient   :   
  | d(y0) / d(x) = (-2)+(2*x) 
  | d(y0) / d(y) = 2*y 

  hessian    :   
  |   d^2(y0) / d(x)^2 = 2 
  | d^2(y0) / d(y)d(x) = 0 
  |   d^2(y0) / d(y)^2 = 2 
  equals  {x | f(x) <= 0} with f=
NumericalMathFunction :
  input  : [x,y]
  output : [y0]
  evaluation :   (x0 > 1) + (x1 > 1) > 0.0
  o
[NumericalMathFunction :
  input  : [x,y]
  output : [y0]
  evaluation :   x^4 + y^4
  gradient   :   
  | d(y0) / d(x) = 4*x^3 
  | d(y0) / d(y) = 4*y^3 

  hessian    :   
  |   d^2(y0) / d(x)^2 = 12*x^2 
  | d^2(y0) / d(y)d(x) = 0 
  |   d^2(y0) / d(y)^2 = 12*y^2 
,NumericalMathFunction :
  input  : [x,y]
  output : [y0]
  evaluation :   (x-1)^2 + y^2
  gradient   :   
  | d(y0) / d(x) = (-2)+(2*x) 
  | d(y0) / d(y) = 2*y 

  hessian    :   
  |   d^2(y0) / d(x)^2 = 2 
  | d^2(y0) / d(y)d(x) = 0 
  |   d^2(y0) / d(y)^2 = 2 
]
  gradient   :   NumericalMathGradientImplementation
  hessian    :   NumericalMathHessianImplementation
intersection contains  [-0.5, -0.5] ?  False
intersection contains  [0.5, 0.0] ?  True
intersection contains  [1.5, 0.0] ?  False
join of  {x | f(x) <= 1} with f=
NumericalMathFunction :
  input  : [x,y]
  output : [y0]
  evaluation :   x^4 + y^4
  gradient   :   
  | d(y0) / d(x) = 4*x^3 
  | d(y0) / d(y) = 4*y^3 

  hessian    :   
  |   d^2(y0) / d(x)^2 = 12*x^2 
  | d^2(y0) / d(y)d(x) = 0 
  |   d^2(y0) / d(y)^2 = 12*y^2 
  and  {x | f(x) <= 1} with f=
NumericalMathFunction :
  input  : [x,y]
  output : [y0]
  evaluation :   (x-1)^2 + y^2
  gradient   :   
  | d(y0) / d(x) = (-2)+(2*x) 
  | d(y0) / d(y) = 2*y 

  hessian    :   
  |   d^2(y0) / d(x)^2 = 2 
  | d^2(y0) / d(y)d(x) = 0 
  |   d^2(y0) / d(y)^2 = 2 
  equals  {x | f(x) <= 0} with f=
NumericalMathFunction :
  input  : [x,y]
  output : [y0]
  evaluation :   (x0 > 1) * (x1 > 1) > 0.0 
  o
[NumericalMathFunction :
  input  : [x,y]
  output : [y0]
  evaluation :   x^4 + y^4
  gradient   :   
  | d(y0) / d(x) = 4*x^3 
  | d(y0) / d(y) = 4*y^3 

  hessian    :   
  |   d^2(y0) / d(x)^2 = 12*x^2 
  | d^2(y0) / d(y)d(x) = 0 
  |   d^2(y0) / d(y)^2 = 12*y^2 
,NumericalMathFunction :
  input  : [x,y]
  output : [y0]
  evaluation :   (x-1)^2 + y^2
  gradient   :   
  | d(y0) / d(x) = (-2)+(2*x) 
  | d(y0) / d(y) = 2*y 

  hessian    :   
  |   d^2(y0) / d(x)^2 = 2 
  | d^2(y0) / d(y)d(x) = 0 
  |   d^2(y0) / d(y)^2 = 2 
]
  gradient   :   NumericalMathGradientImplementation
  hessian    :   NumericalMathHessianImplementation
join contains  [-0.5, -0.5] ?  True
join contains  [0.5, 0.0] ?  True
join contains  [1.5, 0.0] ?  True