1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158
|
levelSet1= {x | f(x) <= 1} with f=
NumericalMathFunction :
input : [x,y]
output : [y0]
evaluation : x^4 + y^4
gradient :
| d(y0) / d(x) = 4*x^3
| d(y0) / d(y) = 4*y^3
hessian :
| d^2(y0) / d(x)^2 = 12*x^2
| d^2(y0) / d(y)d(x) = 0
| d^2(y0) / d(y)^2 = 12*y^2
levelSet1 contains [-0.5, -0.5] ? True
levelSet1 contains [0.5, 0.0] ? True
levelSet1 contains [1.5, 0.0] ? False
levelSet2= {x | f(x) <= 1} with f=
NumericalMathFunction :
input : [x,y]
output : [y0]
evaluation : (x-1)^2 + y^2
gradient :
| d(y0) / d(x) = (-2)+(2*x)
| d(y0) / d(y) = 2*y
hessian :
| d^2(y0) / d(x)^2 = 2
| d^2(y0) / d(y)d(x) = 0
| d^2(y0) / d(y)^2 = 2
levelSet2 contains [-0.5, -0.5] ? False
levelSet2 contains [0.5, 0.0] ? True
levelSet2 contains [1.5, 0.0] ? True
intersection of {x | f(x) <= 1} with f=
NumericalMathFunction :
input : [x,y]
output : [y0]
evaluation : x^4 + y^4
gradient :
| d(y0) / d(x) = 4*x^3
| d(y0) / d(y) = 4*y^3
hessian :
| d^2(y0) / d(x)^2 = 12*x^2
| d^2(y0) / d(y)d(x) = 0
| d^2(y0) / d(y)^2 = 12*y^2
and {x | f(x) <= 1} with f=
NumericalMathFunction :
input : [x,y]
output : [y0]
evaluation : (x-1)^2 + y^2
gradient :
| d(y0) / d(x) = (-2)+(2*x)
| d(y0) / d(y) = 2*y
hessian :
| d^2(y0) / d(x)^2 = 2
| d^2(y0) / d(y)d(x) = 0
| d^2(y0) / d(y)^2 = 2
equals {x | f(x) <= 0} with f=
NumericalMathFunction :
input : [x,y]
output : [y0]
evaluation : (x0 > 1) + (x1 > 1) > 0.0
o
[NumericalMathFunction :
input : [x,y]
output : [y0]
evaluation : x^4 + y^4
gradient :
| d(y0) / d(x) = 4*x^3
| d(y0) / d(y) = 4*y^3
hessian :
| d^2(y0) / d(x)^2 = 12*x^2
| d^2(y0) / d(y)d(x) = 0
| d^2(y0) / d(y)^2 = 12*y^2
,NumericalMathFunction :
input : [x,y]
output : [y0]
evaluation : (x-1)^2 + y^2
gradient :
| d(y0) / d(x) = (-2)+(2*x)
| d(y0) / d(y) = 2*y
hessian :
| d^2(y0) / d(x)^2 = 2
| d^2(y0) / d(y)d(x) = 0
| d^2(y0) / d(y)^2 = 2
]
gradient : NumericalMathGradientImplementation
hessian : NumericalMathHessianImplementation
intersection contains [-0.5, -0.5] ? False
intersection contains [0.5, 0.0] ? True
intersection contains [1.5, 0.0] ? False
join of {x | f(x) <= 1} with f=
NumericalMathFunction :
input : [x,y]
output : [y0]
evaluation : x^4 + y^4
gradient :
| d(y0) / d(x) = 4*x^3
| d(y0) / d(y) = 4*y^3
hessian :
| d^2(y0) / d(x)^2 = 12*x^2
| d^2(y0) / d(y)d(x) = 0
| d^2(y0) / d(y)^2 = 12*y^2
and {x | f(x) <= 1} with f=
NumericalMathFunction :
input : [x,y]
output : [y0]
evaluation : (x-1)^2 + y^2
gradient :
| d(y0) / d(x) = (-2)+(2*x)
| d(y0) / d(y) = 2*y
hessian :
| d^2(y0) / d(x)^2 = 2
| d^2(y0) / d(y)d(x) = 0
| d^2(y0) / d(y)^2 = 2
equals {x | f(x) <= 0} with f=
NumericalMathFunction :
input : [x,y]
output : [y0]
evaluation : (x0 > 1) * (x1 > 1) > 0.0
o
[NumericalMathFunction :
input : [x,y]
output : [y0]
evaluation : x^4 + y^4
gradient :
| d(y0) / d(x) = 4*x^3
| d(y0) / d(y) = 4*y^3
hessian :
| d^2(y0) / d(x)^2 = 12*x^2
| d^2(y0) / d(y)d(x) = 0
| d^2(y0) / d(y)^2 = 12*y^2
,NumericalMathFunction :
input : [x,y]
output : [y0]
evaluation : (x-1)^2 + y^2
gradient :
| d(y0) / d(x) = (-2)+(2*x)
| d(y0) / d(y) = 2*y
hessian :
| d^2(y0) / d(x)^2 = 2
| d^2(y0) / d(y)d(x) = 0
| d^2(y0) / d(y)^2 = 2
]
gradient : NumericalMathGradientImplementation
hessian : NumericalMathHessianImplementation
join contains [-0.5, -0.5] ? True
join contains [0.5, 0.0] ? True
join contains [1.5, 0.0] ? True
|