1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
|
#! /usr/bin/env python
from __future__ import print_function
from openturns import *
TESTPREAMBLE()
try:
inputDimension = 3
outputDimension = 2
# Center
center = NumericalPoint(inputDimension)
center[0] = -1
center[1] = 0.5
center[2] = 1
# Constant term
constant = Matrix(inputDimension, outputDimension)
constant[0, 0] = 1.0
constant[1, 0] = 2.0
constant[2, 0] = 5.0
constant[0, 1] = 7.0
constant[1, 1] = 9.0
constant[2, 1] = 3.0
# Linear term
linear = SymmetricTensor(inputDimension, outputDimension)
linear[0, 0, 0] = 7.0
linear[0, 0, 1] = -7.0
linear[0, 1, 0] = 8.0
linear[0, 1, 1] = -8.0
linear[0, 2, 0] = 9.0
linear[0, 2, 1] = -9.0
linear[1, 0, 0] = 8.0
linear[1, 0, 1] = -8.0
linear[1, 1, 0] = 10.0
linear[1, 1, 1] = -10.0
linear[1, 2, 0] = 11.0
linear[1, 2, 1] = -11.0
linear[2, 0, 0] = 9.0
linear[2, 0, 1] = -9.0
linear[2, 1, 0] = 11.0
linear[2, 1, 1] = -11.0
linear[2, 2, 0] = 12.0
linear[2, 2, 1] = -12.0
# myFunction = linear * (X- center) + constant
myGradient = LinearNumericalMathGradientImplementation(
center, constant, linear)
myGradient.setName("linearGradient")
inPoint = NumericalPoint(inputDimension)
inPoint[0] = 7.0
inPoint[1] = 8.0
inPoint[2] = 9.0
outMatrix = myGradient.gradient(inPoint)
print("myGradient=", repr(myGradient))
print(myGradient.getName(), "( ", repr(inPoint), " ) = ", repr(outMatrix))
except:
import sys
print("t_LinearNumericalMathGradientImplementation_std.py",
sys.exc_info()[0], sys.exc_info()[1])
|