File: t_LinearTaylor_std.py

package info (click to toggle)
openturns 1.7-3
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 38,588 kB
  • ctags: 26,495
  • sloc: cpp: 144,032; python: 26,855; ansic: 7,868; sh: 419; makefile: 263; yacc: 123; lex: 44
file content (27 lines) | stat: -rwxr-xr-x 971 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
#! /usr/bin/env python

from __future__ import print_function
import openturns as ot


eps = 0.2
# Instance creation
myFunc = ot.NumericalMathFunction(['x1', 'x2'], ['f1', 'f2', 'f3'], [
                                  'x1*sin(x2)', 'cos(x1+x2)', '(x2+1)*exp(x1-2*x2)'])
center = ot.NumericalPoint(myFunc.getInputDimension())
for i in range(center.getDimension()):
    center[i] = 1.0 + i
myTaylor = ot.LinearTaylor(center, myFunc)
myTaylor.run()
responseSurface = ot.NumericalMathFunction(myTaylor.getResponseSurface())
print("myTaylor=", repr(myTaylor))
print("responseSurface=", repr(responseSurface))
print("myFunc(", repr(center), ")=", repr(myFunc(center)))
print("responseSurface(", repr(center), ")=",
      repr(responseSurface(center)))
inPoint = ot.NumericalPoint(center)
inPoint[0] += eps
inPoint[1] -= eps / 2
print("myFunc(", repr(inPoint), ")=", repr(myFunc(inPoint)))
print("responseSurface(", repr(inPoint), ")=",
      repr(responseSurface(inPoint)))