File: t_LogNormal_std.expout

package info (click to toggle)
openturns 1.7-3
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 38,588 kB
  • ctags: 26,495
  • sloc: cpp: 144,032; python: 26,855; ansic: 7,868; sh: 419; makefile: 263; yacc: 123; lex: 44
file content (45 lines) | stat: -rw-r--r-- 2,699 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
Distribution  class=LogNormal name=LogNormal dimension=1 muLog=-1 sigmaLog=1.5 gamma=-0.5
Distribution  LogNormal(muLog = -1, sigmaLog = 1.5, gamma = -0.5)
Elliptical =  False
Continuous =  True
oneRealization= class=NumericalPoint name=Unnamed dimension=1 values=[0.416038]
oneSample first= class=NumericalPoint name=Unnamed dimension=1 values=[-0.444936]  last= class=NumericalPoint name=Unnamed dimension=1 values=[3.12047]
mean= class=NumericalPoint name=Unnamed dimension=1 values=[0.609446]
covariance= class=CovarianceMatrix dimension=1 implementation=class=MatrixImplementation name=Unnamed rows=1 columns=1 values=[8.23002]
Kolmogorov test for the generator, sample size= 100  is accepted
Kolmogorov test for the generator, sample size= 1000  is accepted
Point=  class=NumericalPoint name=Unnamed dimension=1 values=[1]
ddf     = class=NumericalPoint name=Unnamed dimension=1 values=[-0.12381]
ddf (FD)= class=NumericalPoint name=Unnamed dimension=1 values=[-0.12381]
log pdf=-2.168831
pdf     =0.114311
pdf (FD)=0.114311
cdf=0.825615
ccdf=0.174385
characteristic function= (0.74087680493-0.0157786395662j)
pdf gradient     = class=NumericalPoint name=Unnamed dimension=3 values=[0.0714046,-0.00930299,0.12381]
pdf gradient (FD)= class=NumericalPoint name=Unnamed dimension=3 values=[0.0714046,-0.00930299,0.12381]
cdf gradient     = class=NumericalPoint name=Unnamed dimension=3 values=[-0.171467,-0.16066,-0.114311]
cdf gradient (FD)= class=NumericalPoint name=Unnamed dimension=3 values=[-0.171467,-0.16066,-0.114311]
quantile= class=NumericalPoint name=Unnamed dimension=1 values=[3.83742]
cdf(quantile)=0.950000
mean= class=NumericalPoint name=Unnamed dimension=1 values=[0.633148]
standard deviation= class=NumericalPoint name=Unnamed dimension=1 values=[3.30128]
skewness= class=NumericalPoint name=Unnamed dimension=1 values=[33.468]
kurtosis= class=NumericalPoint name=Unnamed dimension=1 values=[10078.3]
covariance= class=CovarianceMatrix dimension=1 implementation=class=MatrixImplementation name=Unnamed rows=1 columns=1 values=[10.8985]
parameters= [class=NumericalPointWithDescription name=marginal 1 dimension=3 description=[muLog,sigmaLog,gamma] values=[-1,1.5,-0.5]]
standard moment n= 0  value= [1]
standard moment n= 1  value= [1.13315]
standard moment n= 2  value= [12.1825]
standard moment n= 3  value= [1242.65]
standard moment n= 4  value= [1.2026e+06]
standard moment n= 5  value= [1.10423e+10]
Standard representative= LogNormal(muLog = -1, sigmaLog = 1.5, gamma = 0)
mu=0.633148
sigma=3.301283
muLog from (mu, sigma)=-1.000000
sigmaLog from (mu, sigma)=1.500000
sigmaOverMu=5.214074
muLog from (mu, sigmaOverMu)=-1.000000
sigmaLog from (mu, sigmaOverMu)=1.500000