File: t_MarginalDistribution_std.expout

package info (click to toggle)
openturns 1.7-3
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 38,588 kB
  • ctags: 26,495
  • sloc: cpp: 144,032; python: 26,855; ansic: 7,868; sh: 419; makefile: 263; yacc: 123; lex: 44
file content (41 lines) | stat: -rw-r--r-- 2,479 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
Distribution  class=Beta name=Beta dimension=1 r=2 t=5 a=-1 b=2
Distribution  Beta(r = 2, t = 5, a = -1, b = 2)
Elliptical =  False
Continuous =  True
oneRealization= class=NumericalPoint name=Unnamed dimension=1 values=[0.456966]
oneSample first= class=NumericalPoint name=Unnamed dimension=1 values=[-0.504347]  last= class=NumericalPoint name=Unnamed dimension=1 values=[-0.367645]
mean= class=NumericalPoint name=Unnamed dimension=1 values=[0.203901]
covariance= class=CovarianceMatrix dimension=1 implementation=class=MatrixImplementation name=Unnamed rows=1 columns=1 values=[0.365788]
Kolmogorov test for the generator, sample size= 100  is accepted
Kolmogorov test for the generator, sample size= 1000  is accepted
Point=  class=NumericalPoint name=Unnamed dimension=1 values=[1]
ddf     = class=NumericalPoint name=Unnamed dimension=1 values=[-0.444444]
ddf (FD)= class=NumericalPoint name=Unnamed dimension=1 values=[-0.444444]
log pdf=-1.216395
pdf     =0.296296
pdf (FD)=0.296296
cdf=0.888889
ccdf=0.111111
pdf gradient     = class=NumericalPoint name=Unnamed dimension=4 values=[0.353525,-0.152675,0.246914,0.197531]
pdf gradient (FD)= class=NumericalPoint name=Unnamed dimension=4 values=[0.353525,-0.152675,0.246914,0.197531]
cdf gradient     = class=NumericalPoint name=Unnamed dimension=4 values=[-0.186185,0.0973767,-0.0987654,-0.197531]
cdf gradient (FD)= class=NumericalPoint name=Unnamed dimension=4 values=[-0.186185,0.0973767,-0.0987654,-0.197531]
quantile= class=NumericalPoint name=Unnamed dimension=1 values=[1.25419]
cdf(quantile)=0.950000
mean= class=NumericalPoint name=Unnamed dimension=1 values=[0.2]
standard deviation= class=NumericalPoint name=Unnamed dimension=1 values=[0.6]
skewness= class=NumericalPoint name=Unnamed dimension=1 values=[0.285714]
kurtosis= class=NumericalPoint name=Unnamed dimension=1 values=[2.35714]
covariance= class=CovarianceMatrix dimension=1 implementation=class=MatrixImplementation name=Unnamed rows=1 columns=1 values=[0.36]
parameters= [class=NumericalPointWithDescription name=marginal 1 dimension=4 description=[r,t,a,b] values=[2,5,-1,2]]
standard moment n= 0  value= [1]
standard moment n= 1  value= [-0.2]
standard moment n= 2  value= [0.2]
standard moment n= 3  value= [-0.0857143]
standard moment n= 4  value= [0.0857143]
standard moment n= 5  value= [-0.047619]
Standard representative= Beta(r = 2, t = 5, a = -1, b = 1)
mu=0.200000
sigma=0.600000
r from (mu, sigma)=2.000000
t from (mu, sigma)=5.000000