File: t_MarginalDistribution_std.py

package info (click to toggle)
openturns 1.7-3
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 38,588 kB
  • ctags: 26,495
  • sloc: cpp: 144,032; python: 26,855; ansic: 7,868; sh: 419; makefile: 263; yacc: 123; lex: 44
file content (84 lines) | stat: -rwxr-xr-x 2,884 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
#! /usr/bin/env python

from __future__ import print_function
from openturns import *

TESTPREAMBLE()
RandomGenerator.SetSeed(0)

dimension = 5
indices = [2, 0, 1]
fullDistribution = ComposedDistribution([Normal(), Uniform(), Exponential(
), Weibull()], ComposedCopula([GumbelCopula(), ClaytonCopula()]))
distribution = MarginalDistribution(fullDistribution, indices)

print('Distribution ', repr(distribution))
print('Distribution ', distribution)

# Is this distribution elliptical ?
print('Elliptical = ', distribution.isElliptical())

# Is this distribution continuous ?
print('Continuous = ', distribution.isContinuous())

# Test for realization of distribution
oneRealization = distribution.getRealization()
print('oneRealization=', oneRealization)

# Test for sampling
size = 10000
oneSample = distribution.getSample(size)
print('oneSample first=', oneSample[0], ' last=', oneSample[size - 1])
print('mean=', oneSample.computeMean())
print('covariance=', oneSample.computeCovariance())
if (distribution.getDimension() == 1):
    size = 100
    for i in range(2):
        print('Kolmogorov test for the generator, sample size=', size, ' is ', FittingTest.Kolmogorov(
            distribution.getSample(size), distribution).getBinaryQualityMeasure())
        size *= 10

# Define a point
point = [1.0] * distribution.getDimension()
print('Point= ', point)

# Show PDF and CDF of point
DDF = distribution.computeDDF(point)
print('ddf     =', DDF)
LPDF = distribution.computeLogPDF(point)
print('log pdf=', LPDF)
PDF = distribution.computePDF(point)
print('pdf     =', PDF)
CDF = distribution.computeCDF(point)
print('cdf=', CDF)
CCDF = distribution.computeComplementaryCDF(point)
print('ccdf=', CCDF)
Survival = distribution.computeSurvivalFunction(point)
print('survival=', Survival)
quantile = distribution.computeQuantile(0.95)
print('quantile=', quantile)
print('cdf(quantile)=', distribution.computeCDF(quantile))
quantileTail = distribution.computeQuantile(0.95, True)
print('quantile (tail)=', quantileTail)
CDFTail = distribution.computeComplementaryCDF(quantileTail)
print('cdf (tail)=', CDFTail)
mean = distribution.getMean()
print('mean=', mean)
standardDeviation = distribution.getStandardDeviation()
print('standard deviation=', standardDeviation)
skewness = distribution.getSkewness()
print('skewness=', skewness)
kurtosis = distribution.getKurtosis()
print('kurtosis=', kurtosis)
covariance = distribution.getCovariance()
print('covariance=', covariance)
correlation = distribution.getCorrelation()
print('correlation=', correlation)
spearman = distribution.getSpearmanCorrelation()
print('spearman=', spearman)
kendall = distribution.getKendallTau()
print('kendall=', kendall)
for i in range(6):
    print('standard moment n=', i, ', value=',
          distribution.getStandardMoment(i))
print('Standard representative=', distribution.getStandardRepresentative())