File: t_MinMax_computation.py

package info (click to toggle)
openturns 1.7-3
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 38,588 kB
  • ctags: 26,495
  • sloc: cpp: 144,032; python: 26,855; ansic: 7,868; sh: 419; makefile: 263; yacc: 123; lex: 44
file content (45 lines) | stat: -rwxr-xr-x 1,424 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
#! /usr/bin/env python

from __future__ import print_function
from openturns import *

TESTPREAMBLE()

try:
    # Load the physical model
    inputVariables = Description(4)
    inputVariables[0] = "E"
    inputVariables[1] = "F"
    inputVariables[2] = "L"
    inputVariables[3] = "I"
    outputVariables = Description(1)
    outputVariables[0] = "d"
    formula = Description(1)
    formula[0] = "-F*L^3/(3*E*I)"
    model = NumericalMathFunction(inputVariables, outputVariables, formula)
    inputDimension = model.getInputDimension()
    # Define the reference domaine that will be sampled: an hypercube of side
    # length 2, discretized with 9+2=11 points in each dimension
    levels = NumericalPoint(inputDimension)
    levels[0] = 5.
    levels[1] = 5.
    levels[2] = 5.
    levels[3] = 5.
    myPlane = Box(levels)
    sample = myPlane.generate()
    # Then, scale and move the cube to sample around the point of interrest
    point = NumericalPoint(inputDimension)
    point[0] = 2.1e11
    point[1] = 1e3
    point[2] = 1.5
    point[3] = 2.e-6
    sample *= point * 0.2
    sample += point * 0.9
    # Compute the model over the sample
    response = model(sample)
    # Compute the min and max values taken by the model
    print("Min=%.6f" % response.getMin()[0])
    print("Max=%.6f" % response.getMax()[0])
except:
    import sys
    print("t_MinMax_computation.py", sys.exc_info()[0], sys.exc_info()[1])