File: t_Mixture_std.expout

package info (click to toggle)
openturns 1.7-3
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 38,588 kB
  • ctags: 26,495
  • sloc: cpp: 144,032; python: 26,855; ansic: 7,868; sh: 419; makefile: 263; yacc: 123; lex: 44
file content (38 lines) | stat: -rw-r--r-- 5,754 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
Distribution  class=Mixture name=Mixture dimension=3 distributionCollection=[class=Normal name=Normal dimension=3 mean=class=NumericalPoint name=Unnamed dimension=3 values=[0.5,-0.5,1] sigma=class=NumericalPoint name=Unnamed dimension=3 values=[2,3,1] correlationMatrix=class=CorrelationMatrix dimension=3 implementation=class=MatrixImplementation name=Unnamed rows=3 columns=3 values=[1,0.5,0,0.5,1,0.5,0,0.5,1],class=Normal name=Normal dimension=3 mean=class=NumericalPoint name=Unnamed dimension=3 values=[1.5,0.5,2] sigma=class=NumericalPoint name=Unnamed dimension=3 values=[2,3,1] correlationMatrix=class=CorrelationMatrix dimension=3 implementation=class=MatrixImplementation name=Unnamed rows=3 columns=3 values=[1,0.5,0,0.5,1,0.5,0,0.5,1],class=Normal name=Normal dimension=3 mean=class=NumericalPoint name=Unnamed dimension=3 values=[2.5,1.5,3] sigma=class=NumericalPoint name=Unnamed dimension=3 values=[2,3,1] correlationMatrix=class=CorrelationMatrix dimension=3 implementation=class=MatrixImplementation name=Unnamed rows=3 columns=3 values=[1,0.5,0,0.5,1,0.5,0,0.5,1]] weightsDistribution=class=UserDefined name=UserDefined dimension=1 collection=[(class=NumericalPoint name=Unnamed dimension=1 values=[0],0.333333),(class=NumericalPoint name=Unnamed dimension=1 values=[1],0.333333),(class=NumericalPoint name=Unnamed dimension=1 values=[2],0.333333)]
Weights =  class=NumericalPoint name=Unnamed dimension=3 values=[0.333333,0.333333,0.333333]
After update, new weights =  class=NumericalPoint name=Unnamed dimension=3 values=[0.5,0.25,0.25]
Distribution  class=Mixture name=Mixture dimension=3 distributionCollection=[class=Normal name=Normal dimension=3 mean=class=NumericalPoint name=Unnamed dimension=3 values=[0.5,-0.5,1] sigma=class=NumericalPoint name=Unnamed dimension=3 values=[2,3,1] correlationMatrix=class=CorrelationMatrix dimension=3 implementation=class=MatrixImplementation name=Unnamed rows=3 columns=3 values=[1,0.5,0,0.5,1,0.5,0,0.5,1],class=Normal name=Normal dimension=3 mean=class=NumericalPoint name=Unnamed dimension=3 values=[1.5,0.5,2] sigma=class=NumericalPoint name=Unnamed dimension=3 values=[2,3,1] correlationMatrix=class=CorrelationMatrix dimension=3 implementation=class=MatrixImplementation name=Unnamed rows=3 columns=3 values=[1,0.5,0,0.5,1,0.5,0,0.5,1],class=Normal name=Normal dimension=3 mean=class=NumericalPoint name=Unnamed dimension=3 values=[2.5,1.5,3] sigma=class=NumericalPoint name=Unnamed dimension=3 values=[2,3,1] correlationMatrix=class=CorrelationMatrix dimension=3 implementation=class=MatrixImplementation name=Unnamed rows=3 columns=3 values=[1,0.5,0,0.5,1,0.5,0,0.5,1]] weightsDistribution=class=UserDefined name=UserDefined dimension=1 collection=[(class=NumericalPoint name=Unnamed dimension=1 values=[0],0.333333),(class=NumericalPoint name=Unnamed dimension=1 values=[1],0.333333),(class=NumericalPoint name=Unnamed dimension=1 values=[2],0.333333)]
Elliptical =  False
Continuous =  True
oneRealization= class=NumericalPoint name=Unnamed dimension=3 values=[2.07328,-1.03125,2.18976]
oneSample first= class=NumericalPoint name=Unnamed dimension=3 values=[-1.86277,-0.862642,2.91223]  last= class=NumericalPoint name=Unnamed dimension=3 values=[1.56533,-1.10765,2.76013]
mean= class=NumericalPoint name=Unnamed dimension=3 values=[1.64038,0.699193,2.03941]
covariance= class=CovarianceMatrix dimension=3 implementation=class=MatrixImplementation name=Unnamed rows=3 columns=3 values=[4.88439,3.99293,0.644831,3.99293,9.41608,2.09091,0.644831,2.09091,1.58061]
Point=  class=NumericalPoint name=Unnamed dimension=3 values=[1,1,1]
ddf     = class=NumericalPoint name=Unnamed dimension=3 values=[0.00119456,-0.00197254,0.00476249]
ddf (FD)= class=NumericalPoint name=Unnamed dimension=3 values=[0.00119456,-0.00197254,0.00476249]
log pdf=-5.135163
pdf     =0.005886
cdf=0.115110
ccdf=0.884890
quantile= class=NumericalPoint name=Unnamed dimension=3 values=[5.96551,6.93727,4.61725]
cdf(quantile)=0.950000
mean= class=NumericalPoint name=Unnamed dimension=3 values=[1.5,0.5,2]
covariance= class=CovarianceMatrix dimension=3 implementation=class=MatrixImplementation name=Unnamed rows=3 columns=3 values=[4.66667,3.66667,0.666667,3.66667,9.66667,2.16667,0.666667,2.16667,1.66667]
parameters= [class=NumericalPointWithDescription name=Normal dimension=2 description=[mean_0,standard_deviation_0] values=[0.5,2],class=NumericalPointWithDescription name=Normal dimension=2 description=[mean_0,standard_deviation_0] values=[1.5,2],class=NumericalPointWithDescription name=Normal dimension=2 description=[mean_0,standard_deviation_0] values=[2.5,2],class=NumericalPointWithDescription name=dependence dimension=9 description=[atom_0_R_1_0,atom_0_R_2_0,atom_0_R_2_1,atom_1_R_1_0,atom_1_R_2_0,atom_1_R_2_1,atom_2_R_1_0,atom_2_R_2_0,atom_2_R_2_1] values=[0.5,0,0.5,0.5,0,0.5,0.5,0,0.5]]
standard moment n= 0  value= [1,1,1]
standard moment n= 1  value= [1.5,0.5,2]
standard moment n= 2  value= [6.91667,9.91667,5.66667]
standard moment n= 3  value= [24.375,14.625,18]
standard moment n= 4  value= [132.729,294.229,63.6667]
standard moment n= 5  value= [650.094,711.281,242]
Standard representative= Mixture((w = 0.333333, d = Normal(mu = [0.5,-0.5,1], sigma = [2,3,1], R = [[ 1   0.5 0   ]
 [ 0.5 1   0.5 ]
 [ 0   0.5 1   ]])), (w = 0.333333, d = Normal(mu = [1.5,0.5,2], sigma = [2,3,1], R = [[ 1   0.5 0   ]
 [ 0.5 1   0.5 ]
 [ 0   0.5 1   ]])), (w = 0.333333, d = Normal(mu = [2.5,1.5,3], sigma = [2,3,1], R = [[ 1   0.5 0   ]
 [ 0.5 1   0.5 ]
 [ 0   0.5 1   ]])))
newMixture pdf= 0.135652911626
atoms kept in mixture= [Normal(mu = 2, sigma = 2),Normal(mu = 3, sigma = 3)]
newMixture= Mixture((w = 0.0724638, d = Normal(mu = 2, sigma = 2)), (w = 0.927536, d = Normal(mu = 3, sigma = 3)))