File: t_Mixture_std.py

package info (click to toggle)
openturns 1.7-3
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 38,588 kB
  • ctags: 26,495
  • sloc: cpp: 144,032; python: 26,855; ansic: 7,868; sh: 419; makefile: 263; yacc: 123; lex: 44
file content (151 lines) | stat: -rwxr-xr-x 7,331 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
#! /usr/bin/env python

from __future__ import print_function
from openturns import *

TESTPREAMBLE()
RandomGenerator.SetSeed(0)

try:
    # Instanciate one distribution object
    dimension = 3
    meanPoint = NumericalPoint(dimension, 1.0)
    meanPoint[0] = 0.5
    meanPoint[1] = -0.5
    sigma = NumericalPoint(dimension, 1.0)
    sigma[0] = 2.0
    sigma[1] = 3.0
    R = CorrelationMatrix(dimension)
    for i in range(1, dimension):
        R[i, i - 1] = 0.5

    # Create a collection of distribution
    aCollection = DistributionCollection()

    aCollection.add(Normal(meanPoint, sigma, R))
    meanPoint += NumericalPoint(meanPoint.getDimension(), 1.0)
    aCollection.add(Normal(meanPoint, sigma, R))
    meanPoint += NumericalPoint(meanPoint.getDimension(), 1.0)
    aCollection.add(Normal(meanPoint, sigma, R))

    # Instanciate one distribution object
    distribution = Mixture(
        aCollection, NumericalPoint(aCollection.getSize(), 2.0))
    print("Distribution ", repr(distribution))
    print("Weights = ", repr(distribution.getWeights()))
    weights = distribution.getWeights()
    weights[0] = 2.0 * weights[0]
    distribution.setWeights(weights)
    print("After update, new weights = ", repr(distribution.getWeights()))
    distribution = Mixture(aCollection)
    print("Distribution ", repr(distribution))

    # Is this distribution elliptical ?
    print("Elliptical = ", distribution.isElliptical())

    # Is this distribution continuous ?
    print("Continuous = ", distribution.isContinuous())

    # Test for realization of distribution
    oneRealization = distribution.getRealization()
    print("oneRealization=", repr(oneRealization))

    # Test for sampling
    size = 1000
    oneSample = distribution.getSample(size)
    print("oneSample first=", repr(
        oneSample[0]), " last=", repr(oneSample[size - 1]))
    print("mean=", repr(oneSample.computeMean()))
    print("covariance=", repr(oneSample.computeCovariance()))

    # Define a point
    point = NumericalPoint(distribution.getDimension(), 1.0)
    print("Point= ", repr(point))

    # Show PDF and CDF of point
    eps = 1e-5

    # derivative of PDF with regards its arguments
    DDF = distribution.computeDDF(point)
    print("ddf     =", repr(DDF))
    # by the finite difference technique
    ddfFD = NumericalPoint(dimension)
    for i in range(dimension):
        left = NumericalPoint(point)
        left[i] += eps
        right = NumericalPoint(point)
        right[i] -= eps
        ddfFD[i] = (distribution.computePDF(left) -
                    distribution.computePDF(right)) / (2.0 * eps)
    print("ddf (FD)=", repr(ddfFD))

    # PDF value
    LPDF = distribution.computeLogPDF(point)
    print("log pdf=%.6f" % LPDF)
    PDF = distribution.computePDF(point)
    print("pdf     =%.6f" % PDF)
    # by the finite difference technique from CDF
    if (dimension == 1):
        print("pdf (FD)=%.6f" % ((distribution.computeCDF(point + NumericalPoint(1, eps)) -
                                  distribution.computeCDF(point + NumericalPoint(1, -eps))) / (2.0 * eps)))

    # derivative of the PDF with regards the parameters of the distribution
    CDF = distribution.computeCDF(point)
    print("cdf=%.6f" % CDF)
    CCDF = distribution.computeComplementaryCDF(point)
    print("ccdf=%.6f" % CCDF)
    # PDFgr = distribution.computePDFGradient( point )
    # print "pdf gradient     =" , repr(PDFgr)
    # by the finite difference technique
    # PDFgrFD = NumericalPoint(4)
    # PDFgrFD[0] = (Mixture(distribution.getR() + eps, distribution.getT(), distribution.getA(), distribution.getB()).computePDF(point) -
    #                   Mixture(distribution.getR() - eps, distribution.getT(), distribution.getA(), distribution.getB()).computePDF(point)) / (2.0 * eps)
    #     PDFgrFD[1] = (Mixture(distribution.getR(), distribution.getT() + eps, distribution.getA(), distribution.getB()).computePDF(point) -
    #                   Mixture(distribution.getR(), distribution.getT() - eps, distribution.getA(), distribution.getB()).computePDF(point)) / (2.0 * eps)
    #     PDFgrFD[2] = (Mixture(distribution.getR(), distribution.getT(), distribution.getA() + eps, distribution.getB()).computePDF(point) -
    #                   Mixture(distribution.getR(), distribution.getT(), distribution.getA() - eps, distribution.getB()).computePDF(point)) / (2.0 * eps)
    #     PDFgrFD[3] = (Mixture(distribution.getR(), distribution.getT(), distribution.getA(), distribution.getB() + eps).computePDF(point) -
    #                   Mixture(distribution.getR(), distribution.getT(), distribution.getA(), distribution.getB() - eps).computePDF(point)) / (2.0 * eps)
    # print "pdf gradient (FD)=" , repr(PDFgrFD)

    # derivative of the PDF with regards the parameters of the distribution
    # CDFgr = distribution.computeCDFGradient( point )
    # print "cdf gradient     =" , repr(CDFgr)
    # CDFgrFD = NumericalPoint(4)
    # CDFgrFD[0] = (Mixture(distribution.getR() + eps, distribution.getT(), distribution.getA(), distribution.getB()).computeCDF(point) -
    #                   Mixture(distribution.getR() - eps, distribution.getT(), distribution.getA(), distribution.getB()).computeCDF(point)) / (2.0 * eps)
    #     CDFgrFD[1] = (Mixture(distribution.getR(), distribution.getT() + eps, distribution.getA(), distribution.getB()).computeCDF(point) -
    #                   Mixture(distribution.getR(), distribution.getT() - eps, distribution.getA(), distribution.getB()).computeCDF(point)) / (2.0 * eps)
    #     CDFgrFD[2] = (Mixture(distribution.getR(), distribution.getT(), distribution.getA() + eps, distribution.getB()).computeCDF(point) -
    #                   Mixture(distribution.getR(), distribution.getT(), distribution.getA() - eps, distribution.getB()).computeCDF(point)) / (2.0 * eps)
    #     CDFgrFD[3] = (Mixture(distribution.getR(), distribution.getT(), distribution.getA(), distribution.getB() + eps).computeCDF(point) -
    #                   Mixture(distribution.getR(), distribution.getT(), distribution.getA(), distribution.getB() - eps).computeCDF(point)) / (2.0 * eps)
    # print "cdf gradient (FD)=",  repr(CDFgrFD)

    # quantile
    quantile = distribution.computeQuantile(0.95)
    print("quantile=", repr(quantile))
    print("cdf(quantile)=%.6f" % distribution.computeCDF(quantile))
    mean = distribution.getMean()
    print("mean=", repr(mean))
    covariance = distribution.getCovariance()
    print("covariance=", repr(covariance))
    parameters = distribution.getParametersCollection()
    print("parameters=", repr(parameters))
    for i in range(6):
        print("standard moment n=", i, " value=",
              distribution.getStandardMoment(i))
    print("Standard representative=", distribution.getStandardRepresentative())

    # Constructor with separate weights. Also check small weights removal
    weights = [1.0e-20, 2.5, 32.0]
    atoms = DistributionCollection(
        [Normal(1.0, 1.0), Normal(2.0, 2.0), Normal(3.0, 3.0)])
    newMixture = Mixture(atoms, weights)
    print("newMixture pdf= %.12g" % newMixture.computePDF(2.5))
    print("atoms kept in mixture=", newMixture.getDistributionCollection())
    print("newMixture=", newMixture)

except:
    import sys
    print("t_Mixture_std.py", sys.exc_info()[0], sys.exc_info()[1])