1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
|
#! /usr/bin/env python
from __future__ import print_function
from openturns import *
TESTPREAMBLE()
RandomGenerator.SetSeed(0)
try:
# Instanciate one distribution object
dimension = 3
meanPoint = NumericalPoint(dimension, 1.0)
meanPoint[0] = 0.5
meanPoint[1] = -0.5
sigma = NumericalPoint(dimension, 1.0)
sigma[0] = 2.0
sigma[1] = 3.0
R = CorrelationMatrix(dimension)
for i in range(1, dimension):
R[i, i - 1] = 0.5
# Create a collection of distribution
aCollection = DistributionCollection()
aCollection.add(Normal(meanPoint, sigma, R))
meanPoint += NumericalPoint(meanPoint.getDimension(), 1.0)
aCollection.add(Normal(meanPoint, sigma, R))
meanPoint += NumericalPoint(meanPoint.getDimension(), 1.0)
aCollection.add(Normal(meanPoint, sigma, R))
# Instanciate one distribution object
distribution = Mixture(
aCollection, NumericalPoint(aCollection.getSize(), 2.0))
print("Distribution ", repr(distribution))
print("Weights = ", repr(distribution.getWeights()))
weights = distribution.getWeights()
weights[0] = 2.0 * weights[0]
distribution.setWeights(weights)
print("After update, new weights = ", repr(distribution.getWeights()))
distribution = Mixture(aCollection)
print("Distribution ", repr(distribution))
# Is this distribution elliptical ?
print("Elliptical = ", distribution.isElliptical())
# Is this distribution continuous ?
print("Continuous = ", distribution.isContinuous())
# Test for realization of distribution
oneRealization = distribution.getRealization()
print("oneRealization=", repr(oneRealization))
# Test for sampling
size = 1000
oneSample = distribution.getSample(size)
print("oneSample first=", repr(
oneSample[0]), " last=", repr(oneSample[size - 1]))
print("mean=", repr(oneSample.computeMean()))
print("covariance=", repr(oneSample.computeCovariance()))
# Define a point
point = NumericalPoint(distribution.getDimension(), 1.0)
print("Point= ", repr(point))
# Show PDF and CDF of point
eps = 1e-5
# derivative of PDF with regards its arguments
DDF = distribution.computeDDF(point)
print("ddf =", repr(DDF))
# by the finite difference technique
ddfFD = NumericalPoint(dimension)
for i in range(dimension):
left = NumericalPoint(point)
left[i] += eps
right = NumericalPoint(point)
right[i] -= eps
ddfFD[i] = (distribution.computePDF(left) -
distribution.computePDF(right)) / (2.0 * eps)
print("ddf (FD)=", repr(ddfFD))
# PDF value
LPDF = distribution.computeLogPDF(point)
print("log pdf=%.6f" % LPDF)
PDF = distribution.computePDF(point)
print("pdf =%.6f" % PDF)
# by the finite difference technique from CDF
if (dimension == 1):
print("pdf (FD)=%.6f" % ((distribution.computeCDF(point + NumericalPoint(1, eps)) -
distribution.computeCDF(point + NumericalPoint(1, -eps))) / (2.0 * eps)))
# derivative of the PDF with regards the parameters of the distribution
CDF = distribution.computeCDF(point)
print("cdf=%.6f" % CDF)
CCDF = distribution.computeComplementaryCDF(point)
print("ccdf=%.6f" % CCDF)
# PDFgr = distribution.computePDFGradient( point )
# print "pdf gradient =" , repr(PDFgr)
# by the finite difference technique
# PDFgrFD = NumericalPoint(4)
# PDFgrFD[0] = (Mixture(distribution.getR() + eps, distribution.getT(), distribution.getA(), distribution.getB()).computePDF(point) -
# Mixture(distribution.getR() - eps, distribution.getT(), distribution.getA(), distribution.getB()).computePDF(point)) / (2.0 * eps)
# PDFgrFD[1] = (Mixture(distribution.getR(), distribution.getT() + eps, distribution.getA(), distribution.getB()).computePDF(point) -
# Mixture(distribution.getR(), distribution.getT() - eps, distribution.getA(), distribution.getB()).computePDF(point)) / (2.0 * eps)
# PDFgrFD[2] = (Mixture(distribution.getR(), distribution.getT(), distribution.getA() + eps, distribution.getB()).computePDF(point) -
# Mixture(distribution.getR(), distribution.getT(), distribution.getA() - eps, distribution.getB()).computePDF(point)) / (2.0 * eps)
# PDFgrFD[3] = (Mixture(distribution.getR(), distribution.getT(), distribution.getA(), distribution.getB() + eps).computePDF(point) -
# Mixture(distribution.getR(), distribution.getT(), distribution.getA(), distribution.getB() - eps).computePDF(point)) / (2.0 * eps)
# print "pdf gradient (FD)=" , repr(PDFgrFD)
# derivative of the PDF with regards the parameters of the distribution
# CDFgr = distribution.computeCDFGradient( point )
# print "cdf gradient =" , repr(CDFgr)
# CDFgrFD = NumericalPoint(4)
# CDFgrFD[0] = (Mixture(distribution.getR() + eps, distribution.getT(), distribution.getA(), distribution.getB()).computeCDF(point) -
# Mixture(distribution.getR() - eps, distribution.getT(), distribution.getA(), distribution.getB()).computeCDF(point)) / (2.0 * eps)
# CDFgrFD[1] = (Mixture(distribution.getR(), distribution.getT() + eps, distribution.getA(), distribution.getB()).computeCDF(point) -
# Mixture(distribution.getR(), distribution.getT() - eps, distribution.getA(), distribution.getB()).computeCDF(point)) / (2.0 * eps)
# CDFgrFD[2] = (Mixture(distribution.getR(), distribution.getT(), distribution.getA() + eps, distribution.getB()).computeCDF(point) -
# Mixture(distribution.getR(), distribution.getT(), distribution.getA() - eps, distribution.getB()).computeCDF(point)) / (2.0 * eps)
# CDFgrFD[3] = (Mixture(distribution.getR(), distribution.getT(), distribution.getA(), distribution.getB() + eps).computeCDF(point) -
# Mixture(distribution.getR(), distribution.getT(), distribution.getA(), distribution.getB() - eps).computeCDF(point)) / (2.0 * eps)
# print "cdf gradient (FD)=", repr(CDFgrFD)
# quantile
quantile = distribution.computeQuantile(0.95)
print("quantile=", repr(quantile))
print("cdf(quantile)=%.6f" % distribution.computeCDF(quantile))
mean = distribution.getMean()
print("mean=", repr(mean))
covariance = distribution.getCovariance()
print("covariance=", repr(covariance))
parameters = distribution.getParametersCollection()
print("parameters=", repr(parameters))
for i in range(6):
print("standard moment n=", i, " value=",
distribution.getStandardMoment(i))
print("Standard representative=", distribution.getStandardRepresentative())
# Constructor with separate weights. Also check small weights removal
weights = [1.0e-20, 2.5, 32.0]
atoms = DistributionCollection(
[Normal(1.0, 1.0), Normal(2.0, 2.0), Normal(3.0, 3.0)])
newMixture = Mixture(atoms, weights)
print("newMixture pdf= %.12g" % newMixture.computePDF(2.5))
print("atoms kept in mixture=", newMixture.getDistributionCollection())
print("newMixture=", newMixture)
except:
import sys
print("t_Mixture_std.py", sys.exc_info()[0], sys.exc_info()[1])
|