File: t_MonteCarlo_std.py

package info (click to toggle)
openturns 1.7-3
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 38,588 kB
  • ctags: 26,495
  • sloc: cpp: 144,032; python: 26,855; ansic: 7,868; sh: 419; makefile: 263; yacc: 123; lex: 44
file content (77 lines) | stat: -rwxr-xr-x 1,719 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
#! /usr/bin/env python

from __future__ import print_function
import sys
import openturns as ot

ot.TESTPREAMBLE()
ot.RandomGenerator.SetSeed(0)


def progress(percent):
    sys.stderr.write('-- progress=' + str(percent) + '%\n')


def stop():
    sys.stderr.write('-- stop?\n')
    return False

# We create a numerical math function
myFunction = ot.NumericalMathFunction(
    ["E", "F", "L", "I"], ["d"], ["-F*L^3/(3*E*I)"])

dim = myFunction.getInputDimension()

# We create a normal distribution point of dimension 1
mean = [0.0] * dim
# E
mean[0] = 50.0
# F
mean[1] = 1.0
# L
mean[2] = 10.0
# I
mean[3] = 5.0
sigma = [1.0] * dim
R = ot.IdentityMatrix(dim)
myDistribution = ot.Normal(mean, sigma, R)

# We create a 'usual' RandomVector from the Distribution
vect = ot.RandomVector(myDistribution)

# We create a composite random vector
output = ot.RandomVector(myFunction, vect)

# We create an Event from this RandomVector
myEvent = ot.Event(output, ot.Less(), -3.0)

# We create a Monte Carlo algorithm
myAlgo = ot.MonteCarlo(myEvent)
myAlgo.setMaximumOuterSampling(250)
myAlgo.setBlockSize(4)
myAlgo.setMaximumCoefficientOfVariation(0.1)

print("MonteCarlo=", myAlgo)

# Perform the simulation
myAlgo.run()

# Stream out the result
print("MonteCarlo result=", myAlgo.getResult())

# Use the standard deviation as a stoping rule
myAlgo = ot.MonteCarlo(myEvent)
myAlgo.setMaximumOuterSampling(250)
myAlgo.setBlockSize(4)
myAlgo.setMaximumCoefficientOfVariation(0.0)
myAlgo.setMaximumStandardDeviation(0.1)
myAlgo.setProgressCallback(progress)
myAlgo.setStopCallback(stop)

print("MonteCarlo=", myAlgo)

# Perform the simulation
myAlgo.run()

# Stream out the result
print("MonteCarlo result=", myAlgo.getResult())