File: t_Multinomial_std.expout

package info (click to toggle)
openturns 1.7-3
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 38,588 kB
  • ctags: 26,495
  • sloc: cpp: 144,032; python: 26,855; ansic: 7,868; sh: 419; makefile: 263; yacc: 123; lex: 44
file content (88 lines) | stat: -rw-r--r-- 2,669 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
Distribution  class=Multinomial name=Multinomial dimension=3 p=class=NumericalPoint name=Unnamed dimension=3 values=[0.25,0.25,0.25] n=5
Distribution  Multinomial(n = 5, p = [0.25,0.25,0.25])
Elliptical =  False
Continuous =  False
oneRealization= [1,2,0]
oneSample first= class=NumericalPoint name=Unnamed dimension=3 values=[0,1,4]  last= class=NumericalPoint name=Unnamed dimension=3 values=[3,1,0]
mean= class=NumericalPoint name=Unnamed dimension=3 values=[1.2635,1.2335,1.2564]
covariance= class=CovarianceMatrix dimension=3 implementation=class=MatrixImplementation name=Unnamed rows=3 columns=3 values=[0.937762,-0.300457,-0.315593,-0.300457,0.930871,-0.314301,-0.315593,-0.314301,0.947554]
support=
 0 : [ 0 0 0 ]
 1 : [ 1 0 0 ]
 2 : [ 0 1 0 ]
 3 : [ 0 0 1 ]
 4 : [ 2 0 0 ]
 5 : [ 1 1 0 ]
 6 : [ 1 0 1 ]
 7 : [ 0 2 0 ]
 8 : [ 0 1 1 ]
 9 : [ 0 0 2 ]
10 : [ 3 0 0 ]
11 : [ 2 1 0 ]
12 : [ 2 0 1 ]
13 : [ 1 2 0 ]
14 : [ 1 1 1 ]
15 : [ 1 0 2 ]
16 : [ 0 3 0 ]
17 : [ 0 2 1 ]
18 : [ 0 1 2 ]
19 : [ 0 0 3 ]
20 : [ 4 0 0 ]
21 : [ 3 1 0 ]
22 : [ 3 0 1 ]
23 : [ 2 2 0 ]
24 : [ 2 1 1 ]
25 : [ 2 0 2 ]
26 : [ 1 3 0 ]
27 : [ 1 2 1 ]
28 : [ 1 1 2 ]
29 : [ 1 0 3 ]
30 : [ 0 4 0 ]
31 : [ 0 3 1 ]
32 : [ 0 2 2 ]
33 : [ 0 1 3 ]
34 : [ 0 0 4 ]
35 : [ 5 0 0 ]
36 : [ 4 1 0 ]
37 : [ 4 0 1 ]
38 : [ 3 2 0 ]
39 : [ 3 1 1 ]
40 : [ 3 0 2 ]
41 : [ 2 3 0 ]
42 : [ 2 2 1 ]
43 : [ 2 1 2 ]
44 : [ 2 0 3 ]
45 : [ 1 4 0 ]
46 : [ 1 3 1 ]
47 : [ 1 2 2 ]
48 : [ 1 1 3 ]
49 : [ 1 0 4 ]
50 : [ 0 5 0 ]
51 : [ 0 4 1 ]
52 : [ 0 3 2 ]
53 : [ 0 2 3 ]
54 : [ 0 1 4 ]
55 : [ 0 0 5 ]
support restricted to the interval=
[1, 3]
[1, 3]
[1, 3] gives=
0 : [ 1 1 1 ]
1 : [ 2 1 1 ]
2 : [ 1 2 1 ]
3 : [ 1 1 2 ]
4 : [ 3 1 1 ]
5 : [ 2 2 1 ]
6 : [ 2 1 2 ]
7 : [ 1 3 1 ]
8 : [ 1 2 2 ]
9 : [ 1 1 3 ]
Point=  class=NumericalPoint name=Unnamed dimension=3 values=[1,1,1]
log pdf=-2.837127
pdf     =0.058594
cdf=0.13281
quantile= class=NumericalPoint name=Unnamed dimension=3 values=[3,3,3]
cdf(quantile)= 0.953125
mean= class=NumericalPoint name=Unnamed dimension=3 values=[1.25,1.25,1.25]
covariance= class=CovarianceMatrix dimension=3 implementation=class=MatrixImplementation name=Unnamed rows=3 columns=3 values=[0.9375,-0.3125,-0.3125,-0.3125,0.9375,-0.3125,-0.3125,-0.3125,0.9375]
parameters= [class=NumericalPointWithDescription name=marginal 1 dimension=2 description=[n,p_0] values=[5,0.25],class=NumericalPointWithDescription name=marginal 2 dimension=2 description=[n,p_1] values=[5,0.25],class=NumericalPointWithDescription name=marginal 3 dimension=2 description=[n,p_2] values=[5,0.25],class=NumericalPointWithDescription name=dependence dimension=4 description=[n,p_0,p_1,p_2] values=[5,0.25,0.25,0.25]]