File: t_NegativeBinomial_std.expout

package info (click to toggle)
openturns 1.7-3
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 38,588 kB
  • ctags: 26,495
  • sloc: cpp: 144,032; python: 26,855; ansic: 7,868; sh: 419; makefile: 263; yacc: 123; lex: 44
file content (27 lines) | stat: -rw-r--r-- 1,622 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
Distribution  class=NegativeBinomial name=NegativeBinomial dimension=1 r=4.5 p=0.7
Distribution  NegativeBinomial(r = 4.5, p = 0.7)
Elliptical =  False
Continuous =  False
oneRealization= class=NumericalPoint name=Unnamed dimension=1 values=[7]
oneSample first= class=NumericalPoint name=Unnamed dimension=1 values=[10]  last= class=NumericalPoint name=Unnamed dimension=1 values=[20]
mean= class=NumericalPoint name=Unnamed dimension=1 values=[10.4746]
covariance= class=CovarianceMatrix dimension=1 implementation=class=MatrixImplementation name=Unnamed rows=1 columns=1 values=[35.6333]
Point=  class=NumericalPoint name=Unnamed dimension=1 values=[5]
pdf     =0.063727
pdf (FD)=0.063727
cdf=0.203394
quantile= class=NumericalPoint name=Unnamed dimension=1 values=[22]
cdf(quantile)=0.959829
mean= class=NumericalPoint name=Unnamed dimension=1 values=[10.5]
standard deviation= class=NumericalPoint name=Unnamed dimension=1 values=[5.91608]
skewness= class=NumericalPoint name=Unnamed dimension=1 values=[0.957841]
kurtosis= class=NumericalPoint name=Unnamed dimension=1 values=[4.3619]
covariance= class=CovarianceMatrix dimension=1 implementation=class=MatrixImplementation name=Unnamed rows=1 columns=1 values=[35]
parameters= [class=NumericalPointWithDescription name=marginal 1 dimension=2 description=[r,p] values=[4.5,0.7]]
standard moment n= 0  value= [1]
standard moment n= 1  value= [10.5]
standard moment n= 2  value= [145.25]
standard moment n= 3  value= [2458.46]
standard moment n= 4  value= [48980.9]
standard moment n= 5  value= [1.12011e+06]
Standard representative= NegativeBinomial(r = 4.5, p = 0.7)