1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71
|
#! /usr/bin/env python
from __future__ import print_function
from openturns import *
TESTPREAMBLE()
RandomGenerator.SetSeed(0)
try:
# Instanciate one distribution object
distribution = NegativeBinomial(4.5, 0.7)
print("Distribution ", repr(distribution))
print("Distribution ", distribution)
# Is this distribution elliptical ?
print("Elliptical = ", distribution.isElliptical())
# Is this distribution continuous ?
print("Continuous = ", distribution.isContinuous())
# Test for realization of distribution
oneRealization = distribution.getRealization()
print("oneRealization=", repr(oneRealization))
# Test for sampling
size = 10000
oneSample = distribution.getSample(size)
print("oneSample first=", repr(oneSample[0]), " last=", repr(oneSample[1]))
print("mean=", repr(oneSample.computeMean()))
print("covariance=", repr(oneSample.computeCovariance()))
# Define a point
point = NumericalPoint(distribution.getDimension(), 5.0)
print("Point= ", repr(point))
# Show PDF and CDF of point
eps = 1e-5
# PDF value
PDF = distribution.computePDF(point)
print("pdf =%.6f" % PDF)
# by the finite difference technique from CDF
print("pdf (FD)=%.6f" % (distribution.computeCDF(
point + NumericalPoint(1, 0)) - distribution.computeCDF(point + NumericalPoint(1, -1))))
# derivative of the PDF with regards the parameters of the distribution
CDF = distribution.computeCDF(point)
print("cdf=%.6f" % CDF)
# quantile
quantile = distribution.computeQuantile(0.95)
print("quantile=", repr(quantile))
print("cdf(quantile)=%.6f" % distribution.computeCDF(quantile))
mean = distribution.getMean()
print("mean=", repr(mean))
standardDeviation = distribution.getStandardDeviation()
print("standard deviation=", repr(standardDeviation))
skewness = distribution.getSkewness()
print("skewness=", repr(skewness))
kurtosis = distribution.getKurtosis()
print("kurtosis=", repr(kurtosis))
covariance = distribution.getCovariance()
print("covariance=", repr(covariance))
parameters = distribution.getParametersCollection()
print("parameters=", repr(parameters))
for i in range(6):
print("standard moment n=", i, " value=",
distribution.getStandardMoment(i))
print("Standard representative=", distribution.getStandardRepresentative())
except:
import sys
print("t_NegativeBinomial_std.py", sys.exc_info()[0], sys.exc_info()[1])
|