File: t_Normal_std.py

package info (click to toggle)
openturns 1.7-3
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 38,588 kB
  • ctags: 26,495
  • sloc: cpp: 144,032; python: 26,855; ansic: 7,868; sh: 419; makefile: 263; yacc: 123; lex: 44
file content (211 lines) | stat: -rwxr-xr-x 8,219 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
#! /usr/bin/env python

from __future__ import print_function
from openturns import *
from math import *

TESTPREAMBLE()
RandomGenerator.SetSeed(0)


def cleanScalar(inScalar):
    if (fabs(inScalar) < 1.e-10):
        inScalar = 0.0
    return inScalar


def cleanNumericalPoint(inNumericalPoint):
    dim = inNumericalPoint.getDimension()
    for i in range(dim):
        if (fabs(inNumericalPoint[i]) < 1.e-10):
            inNumericalPoint[i] = 0.0
    return inNumericalPoint

try:
    PlatformInfo.SetNumericalPrecision(5)
    # Instanciate one distribution object
    dim = 3
    meanPoint = NumericalPoint(dim, 1.0)
    meanPoint[0] = 0.5
    meanPoint[1] = -0.5
    sigma = NumericalPoint(dim, 1.0)
    sigma[0] = 2.0
    sigma[1] = 3.0
    R = CorrelationMatrix(dim)
    for i in range(1, dim):
        R[i, i - 1] = 0.5

    distribution = Normal(meanPoint, sigma, R)

    distribution.setName("A normal distribution")
    description = Description(dim)
    description[0] = "Marginal 1"
    description[1] = "Marginal 2"
    description[2] = "Marginal 3"
    distribution.setDescription(description)

    print("Parameters collection=", repr(
        distribution.getParametersCollection()))
    for i in range(6):
        print("standard moment n=", i, " value=",
              distribution.getStandardMoment(i))
    print("Standard representative=", distribution.getStandardRepresentative())

    print("Distribution ", repr(distribution))
    print("Distribution ", distribution)
    print("Covariance ", repr(distribution.getCovariance()))

    # Is this distribution elliptical ?
    print("Elliptical = ", distribution.isElliptical())

    # Is this distribution continuous ?
    print("Continuous = ", distribution.isContinuous())

    # Test for realization of distribution
    oneRealization = distribution.getRealization()
    print("oneRealization=", repr(oneRealization))

    # Test for sampling
    size = 10000
    oneSample = distribution.getSample(size)
    print("oneSample first=", repr(
        oneSample[0]), " last=", repr(oneSample[size - 1]))
    print("mean=", repr(oneSample.computeMean()))
    print("covariance=", repr(oneSample.computeCovariance()))

    # Define a point
    point = NumericalPoint(distribution.getDimension(), 0.5)
    print("Point= ", repr(point))

    # Show PDF and CDF of point
    eps = 1e-5

    # derivative of PDF with respect to its arguments
    DDF = distribution.computeDDF(point)
    print("ddf     =", repr(cleanNumericalPoint(DDF)))
    # by the finite difference technique
    ddfFD = NumericalPoint(dim)
    for i in range(dim):
        pointEps = point
        pointEps[i] += eps
        ddfFD[i] = distribution.computePDF(pointEps)
        pointEps[i] -= 2.0 * eps
        ddfFD[i] -= distribution.computePDF(pointEps)
        ddfFD[i] /= 2.0 * eps
    print("ddf (FD)=", repr(cleanNumericalPoint(ddfFD)))
    # PDF value
    LPDF = distribution.computeLogPDF(point)
    print("log pdf=%.6f" % LPDF)
    PDF = distribution.computePDF(point)
    print("pdf     =%.6f" % PDF)
    # by the finite difference technique from CDF
    if dim == 1:
        print("pdf (FD)=%.6f" % cleanScalar((distribution.computeCDF(
            point + NumericalPoint(1, eps)) - distribution.computeCDF(point + NumericalPoint(1, -eps))) / (2.0 * eps)))
    CF = distribution.computeCharacteristicFunction(point)
    print("characteristic function=%.6f+%.6fi" % (CF.real, CF.imag))
    LCF = distribution.computeLogCharacteristicFunction(point)
    print("log characteristic function=%.6f+%.6fi" % (LCF.real, LCF.imag))
    CDF = distribution.computeCDF(point)
    print("cdf=%.6f" % CDF)
    PDFgr = distribution.computePDFGradient(point)
    print("pdf gradient     =", repr(PDFgr))
    # by the finite difference technique
    PDFgrFD = NumericalPoint(2 * dim)
    for i in range(dim):
        meanPoint[i] += eps
        distributionLeft = Normal(meanPoint, sigma, R)
        meanPoint[i] -= 2.0 * eps
        distributionRight = Normal(meanPoint, sigma, R)
        PDFgrFD[i] = (distributionLeft.computePDF(point)
                      - distributionRight.computePDF(point)) / (2.0 * eps)
        meanPoint[i] += eps
    for i in range(dim):
        sigma[i] += eps
        distributionLeft = Normal(meanPoint, sigma, R)
        sigma[i] -= 2.0 * eps
        distributionRight = Normal(meanPoint, sigma, R)
        PDFgrFD[dim + i] = (distributionLeft.computePDF(
            point) - distributionRight.computePDF(point)) / (2.0 * eps)
        sigma[i] += eps
    print("pdf gradient (FD)=", repr(cleanNumericalPoint(PDFgrFD)))

    # derivative of the PDF with regards the parameters of the distribution
    #   CDFgr = distribution.computeCDFGradient( point )
    #     print "cdf gradient     =" , CDFgr

    # quantile
    quantile = distribution.computeQuantile(0.95)
    print("quantile=", repr(quantile))
    print("cdf(quantile)=%.6f" % distribution.computeCDF(quantile))
    mean = distribution.getMean()
    print("mean=", repr(mean))
    standardDeviation = distribution.getStandardDeviation()
    print("standard deviation=", repr(standardDeviation))
    skewness = distribution.getSkewness()
    print("skewness=", repr(skewness))
    kurtosis = distribution.getKurtosis()
    print("kurtosis=", repr(kurtosis))
    covariance = distribution.getCovariance()
    print("covariance=", repr(covariance))
    parameters = distribution.getParametersCollection()
    print("parameters=", repr(parameters))

    # Specific to this distribution
    beta = point.normSquare()
    densityGenerator = distribution.computeDensityGenerator(beta)
    print("density generator=%.6f" % densityGenerator)

    print("pdf via density generator=%.6f" %
          EllipticalDistribution.computePDF(distribution, point))
    densityGeneratorDerivative = distribution.computeDensityGeneratorDerivative(
        beta)
    print("density generator derivative     =%.6f" %
          densityGeneratorDerivative)
    print("density generator derivative (FD)=%.6f" % cleanScalar((distribution.computeDensityGenerator(
        beta + eps) - distribution.computeDensityGenerator(beta - eps)) / (2.0 * eps)))
    densityGeneratorSecondDerivative = distribution.computeDensityGeneratorSecondDerivative(
        beta)
    print("density generator second derivative     =%.6f" %
          densityGeneratorSecondDerivative)
    print("density generator second derivative (FD)=%.6f" % cleanScalar((distribution.computeDensityGeneratorDerivative(
        beta + eps) - distribution.computeDensityGeneratorDerivative(beta - eps)) / (2.0 * eps)))

    # Compute the radial CDF
    radius = 2.0
    print("Radial CDF(%.6f" % radius, ")=%.6f" %
          distribution.computeRadialDistributionCDF(radius))

    # Extract the marginals
    for i in range(dim):
        margin = distribution.getMarginal(i)
    print("margin=", repr(margin))
    print("margin PDF=%.6f" % margin.computePDF(NumericalPoint(1, 0.5)))
    print("margin CDF=%.6f" % margin.computeCDF(NumericalPoint(1, 0.5)))
    print("margin quantile=", repr(margin.computeQuantile(0.95)))
    print("margin realization=", repr(margin.getRealization()))
    if (dim >= 2):
        # Extract a 2-D marginal
        indices = Indices(2, 0)
        indices[0] = 1
        indices[1] = 0
        print("indices=", repr(indices))
        margins = distribution.getMarginal(indices)
        print("margins=", repr(margins))
        print("margins PDF=%.6f" % margins.computePDF(NumericalPoint(2, 0.5)))
        print("margins CDF=%.6f" % margins.computeCDF(NumericalPoint(2, 0.5)))
        quantile = margins.computeQuantile(0.95)
        print("margins quantile=", repr(quantile))
        print("margins CDF(qantile)=%.6f" % margins.computeCDF(quantile))
        print("margins realization=", repr(margins.getRealization()))

    chol = distribution.getCholesky()
    invChol = distribution.getInverseCholesky()
    print("chol=", repr(chol.clean(1e-6)))
    print("invchol=", repr(invChol.clean(1e-6)))
    print("chol*t(chol)=", repr((chol * chol.transpose()).clean(1e-6)))
    print("chol*invchol=", repr((chol * invChol).clean(1e-6)))

except:
    import sys
    print("t_Normal_std.py", sys.exc_info()[0], sys.exc_info()[1])