1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
|
#! /usr/bin/env python
from __future__ import print_function
from openturns import *
from math import *
TESTPREAMBLE()
RandomGenerator.SetSeed(0)
def cleanScalar(inScalar):
if (fabs(inScalar) < 1.e-10):
inScalar = 0.0
return inScalar
def cleanNumericalPoint(inNumericalPoint):
dim = inNumericalPoint.getDimension()
for i in range(dim):
if (fabs(inNumericalPoint[i]) < 1.e-10):
inNumericalPoint[i] = 0.0
return inNumericalPoint
try:
PlatformInfo.SetNumericalPrecision(5)
# Instanciate one distribution object
dim = 3
meanPoint = NumericalPoint(dim, 1.0)
meanPoint[0] = 0.5
meanPoint[1] = -0.5
sigma = NumericalPoint(dim, 1.0)
sigma[0] = 2.0
sigma[1] = 3.0
R = CorrelationMatrix(dim)
for i in range(1, dim):
R[i, i - 1] = 0.5
distribution = Normal(meanPoint, sigma, R)
distribution.setName("A normal distribution")
description = Description(dim)
description[0] = "Marginal 1"
description[1] = "Marginal 2"
description[2] = "Marginal 3"
distribution.setDescription(description)
print("Parameters collection=", repr(
distribution.getParametersCollection()))
for i in range(6):
print("standard moment n=", i, " value=",
distribution.getStandardMoment(i))
print("Standard representative=", distribution.getStandardRepresentative())
print("Distribution ", repr(distribution))
print("Distribution ", distribution)
print("Covariance ", repr(distribution.getCovariance()))
# Is this distribution elliptical ?
print("Elliptical = ", distribution.isElliptical())
# Is this distribution continuous ?
print("Continuous = ", distribution.isContinuous())
# Test for realization of distribution
oneRealization = distribution.getRealization()
print("oneRealization=", repr(oneRealization))
# Test for sampling
size = 10000
oneSample = distribution.getSample(size)
print("oneSample first=", repr(
oneSample[0]), " last=", repr(oneSample[size - 1]))
print("mean=", repr(oneSample.computeMean()))
print("covariance=", repr(oneSample.computeCovariance()))
# Define a point
point = NumericalPoint(distribution.getDimension(), 0.5)
print("Point= ", repr(point))
# Show PDF and CDF of point
eps = 1e-5
# derivative of PDF with respect to its arguments
DDF = distribution.computeDDF(point)
print("ddf =", repr(cleanNumericalPoint(DDF)))
# by the finite difference technique
ddfFD = NumericalPoint(dim)
for i in range(dim):
pointEps = point
pointEps[i] += eps
ddfFD[i] = distribution.computePDF(pointEps)
pointEps[i] -= 2.0 * eps
ddfFD[i] -= distribution.computePDF(pointEps)
ddfFD[i] /= 2.0 * eps
print("ddf (FD)=", repr(cleanNumericalPoint(ddfFD)))
# PDF value
LPDF = distribution.computeLogPDF(point)
print("log pdf=%.6f" % LPDF)
PDF = distribution.computePDF(point)
print("pdf =%.6f" % PDF)
# by the finite difference technique from CDF
if dim == 1:
print("pdf (FD)=%.6f" % cleanScalar((distribution.computeCDF(
point + NumericalPoint(1, eps)) - distribution.computeCDF(point + NumericalPoint(1, -eps))) / (2.0 * eps)))
CF = distribution.computeCharacteristicFunction(point)
print("characteristic function=%.6f+%.6fi" % (CF.real, CF.imag))
LCF = distribution.computeLogCharacteristicFunction(point)
print("log characteristic function=%.6f+%.6fi" % (LCF.real, LCF.imag))
CDF = distribution.computeCDF(point)
print("cdf=%.6f" % CDF)
PDFgr = distribution.computePDFGradient(point)
print("pdf gradient =", repr(PDFgr))
# by the finite difference technique
PDFgrFD = NumericalPoint(2 * dim)
for i in range(dim):
meanPoint[i] += eps
distributionLeft = Normal(meanPoint, sigma, R)
meanPoint[i] -= 2.0 * eps
distributionRight = Normal(meanPoint, sigma, R)
PDFgrFD[i] = (distributionLeft.computePDF(point)
- distributionRight.computePDF(point)) / (2.0 * eps)
meanPoint[i] += eps
for i in range(dim):
sigma[i] += eps
distributionLeft = Normal(meanPoint, sigma, R)
sigma[i] -= 2.0 * eps
distributionRight = Normal(meanPoint, sigma, R)
PDFgrFD[dim + i] = (distributionLeft.computePDF(
point) - distributionRight.computePDF(point)) / (2.0 * eps)
sigma[i] += eps
print("pdf gradient (FD)=", repr(cleanNumericalPoint(PDFgrFD)))
# derivative of the PDF with regards the parameters of the distribution
# CDFgr = distribution.computeCDFGradient( point )
# print "cdf gradient =" , CDFgr
# quantile
quantile = distribution.computeQuantile(0.95)
print("quantile=", repr(quantile))
print("cdf(quantile)=%.6f" % distribution.computeCDF(quantile))
mean = distribution.getMean()
print("mean=", repr(mean))
standardDeviation = distribution.getStandardDeviation()
print("standard deviation=", repr(standardDeviation))
skewness = distribution.getSkewness()
print("skewness=", repr(skewness))
kurtosis = distribution.getKurtosis()
print("kurtosis=", repr(kurtosis))
covariance = distribution.getCovariance()
print("covariance=", repr(covariance))
parameters = distribution.getParametersCollection()
print("parameters=", repr(parameters))
# Specific to this distribution
beta = point.normSquare()
densityGenerator = distribution.computeDensityGenerator(beta)
print("density generator=%.6f" % densityGenerator)
print("pdf via density generator=%.6f" %
EllipticalDistribution.computePDF(distribution, point))
densityGeneratorDerivative = distribution.computeDensityGeneratorDerivative(
beta)
print("density generator derivative =%.6f" %
densityGeneratorDerivative)
print("density generator derivative (FD)=%.6f" % cleanScalar((distribution.computeDensityGenerator(
beta + eps) - distribution.computeDensityGenerator(beta - eps)) / (2.0 * eps)))
densityGeneratorSecondDerivative = distribution.computeDensityGeneratorSecondDerivative(
beta)
print("density generator second derivative =%.6f" %
densityGeneratorSecondDerivative)
print("density generator second derivative (FD)=%.6f" % cleanScalar((distribution.computeDensityGeneratorDerivative(
beta + eps) - distribution.computeDensityGeneratorDerivative(beta - eps)) / (2.0 * eps)))
# Compute the radial CDF
radius = 2.0
print("Radial CDF(%.6f" % radius, ")=%.6f" %
distribution.computeRadialDistributionCDF(radius))
# Extract the marginals
for i in range(dim):
margin = distribution.getMarginal(i)
print("margin=", repr(margin))
print("margin PDF=%.6f" % margin.computePDF(NumericalPoint(1, 0.5)))
print("margin CDF=%.6f" % margin.computeCDF(NumericalPoint(1, 0.5)))
print("margin quantile=", repr(margin.computeQuantile(0.95)))
print("margin realization=", repr(margin.getRealization()))
if (dim >= 2):
# Extract a 2-D marginal
indices = Indices(2, 0)
indices[0] = 1
indices[1] = 0
print("indices=", repr(indices))
margins = distribution.getMarginal(indices)
print("margins=", repr(margins))
print("margins PDF=%.6f" % margins.computePDF(NumericalPoint(2, 0.5)))
print("margins CDF=%.6f" % margins.computeCDF(NumericalPoint(2, 0.5)))
quantile = margins.computeQuantile(0.95)
print("margins quantile=", repr(quantile))
print("margins CDF(qantile)=%.6f" % margins.computeCDF(quantile))
print("margins realization=", repr(margins.getRealization()))
chol = distribution.getCholesky()
invChol = distribution.getInverseCholesky()
print("chol=", repr(chol.clean(1e-6)))
print("invchol=", repr(invChol.clean(1e-6)))
print("chol*t(chol)=", repr((chol * chol.transpose()).clean(1e-6)))
print("chol*invchol=", repr((chol * invChol).clean(1e-6)))
except:
import sys
print("t_Normal_std.py", sys.exc_info()[0], sys.exc_info()[1])
|