File: t_NormalityTest_std.py

package info (click to toggle)
openturns 1.7-3
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 38,588 kB
  • ctags: 26,495
  • sloc: cpp: 144,032; python: 26,855; ansic: 7,868; sh: 419; makefile: 263; yacc: 123; lex: 44
file content (141 lines) | stat: -rwxr-xr-x 5,449 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
#! /usr/bin/env python

from __future__ import print_function
from openturns import *

TESTPREAMBLE()
RandomGenerator.SetSeed(0)

try:

    continuousDistributionCollection = DistributionCollection()
    discreteDistributionCollection = DistributionCollection()
    distributionCollection = DistributionCollection()

    beta = Beta(2., 3., 0., 1.)
    distributionCollection.add(beta)
    continuousDistributionCollection.add(beta)

    gamma = Gamma(1., 2., 3.)
    distributionCollection.add(gamma)
    continuousDistributionCollection.add(gamma)

    gumbel = Gumbel(1., 2.)
    distributionCollection.add(gumbel)
    continuousDistributionCollection.add(gumbel)

    lognormal = LogNormal(1., 1., 2.)
    distributionCollection.add(lognormal)
    continuousDistributionCollection.add(lognormal)

    logistic = Logistic(1., 1.)
    distributionCollection.add(logistic)
    continuousDistributionCollection.add(logistic)

    normal = Normal(1., 2.)
    distributionCollection.add(normal)
    continuousDistributionCollection.add(normal)

    truncatednormal = TruncatedNormal(1., 1., 0., 3.)
    distributionCollection.add(truncatednormal)
    continuousDistributionCollection.add(truncatednormal)

    student = Student(10., 10.)
    distributionCollection.add(student)
    continuousDistributionCollection.add(student)

    triangular = Triangular(-1., 2., 4.)
    distributionCollection.add(triangular)
    continuousDistributionCollection.add(triangular)

    uniform = Uniform(1., 2.)
    distributionCollection.add(uniform)
    continuousDistributionCollection.add(uniform)

    weibull = Weibull(1., 1., 2.)
    distributionCollection.add(weibull)
    continuousDistributionCollection.add(weibull)

    geometric = Geometric(.5)
    distributionCollection.add(geometric)
    discreteDistributionCollection.add(geometric)

    poisson = Poisson(2.)
    distributionCollection.add(poisson)
    discreteDistributionCollection.add(poisson)

    collection = UserDefinedPairCollection(
        3, UserDefinedPair(NumericalPoint(1), 0.0))

    point = NumericalPoint(1)
    point[0] = 1.0
    collection[0] = UserDefinedPair(point, 0.3)
    point[0] = 2.0
    collection[1] = UserDefinedPair(point, 0.2)
    point[0] = 3.0
    collection[2] = UserDefinedPair(point, 0.5)
    userdefined = UserDefined(collection)
    distributionCollection.add(userdefined)
    discreteDistributionCollection.add(userdefined)

    size = 10000

    # Number of continuous distributions
    continuousDistributionNumber = continuousDistributionCollection.getSize()
    # Number of discrete distributions
    discreteDistributionNumber = discreteDistributionCollection.getSize()
    # Number of distributions
    distributionNumber = continuousDistributionNumber + \
        discreteDistributionNumber

    # We create a collection of NumericalSample of size "size" and of
    # dimension 1 (scalar values) : the collection has distributionNumber
    # NumericalSamples
    sampleCollection = [NumericalSample(size, 1)
                        for i in range(distributionNumber)]
    # We create a collection of NumericalSample of size "size" and of
    # dimension 1 (scalar values) : the collection has
    # continuousDistributionNumber NumericalSamples
    continuousSampleCollection = [NumericalSample(size, 1)
                                  for i in range(continuousDistributionNumber)]
    # We create a collection of NumericalSample of size "size" and of
    # dimension 1 (scalar values) : the collection has
    # discreteDistributionNumber NumericalSamples
    discreteSampleCollection = [NumericalSample(size, 1)
                                for i in range(discreteDistributionNumber)]

    for i in range(continuousDistributionNumber):
        continuousSampleCollection[
            i] = continuousDistributionCollection[i].getSample(size)
        continuousSampleCollection[i].setName(
            continuousDistributionCollection[i].getName())
        sampleCollection[i] = continuousSampleCollection[i]
    for i in range(discreteDistributionNumber):
        discreteSampleCollection[
            i] = discreteDistributionCollection[i].getSample(size)
        discreteSampleCollection[i].setName(
            discreteDistributionCollection[i].getName())
        sampleCollection[
            continuousDistributionNumber + i] = discreteSampleCollection[i]

    # Test the normality of several samples using the Anderson Darling test
    andersonDarlingResult = NumericalPoint(distributionNumber)
    for i in range(distributionNumber):
        result = NormalityTest.AndersonDarlingNormal(sampleCollection[i])
        andersonDarlingResult[i] = result.getBinaryQualityMeasure()
        print("sample ", sampleCollection[
              i].getName(), " result=", andersonDarlingResult[i])
    print("andersonDarlingResult=", repr(andersonDarlingResult))

    # Test the normality of several samples using the Cramer Von Mises test
    cramerVonMisesResult = NumericalPoint(distributionNumber)
    for i in range(distributionNumber):
        result = NormalityTest.CramerVonMisesNormal(sampleCollection[i])
        cramerVonMisesResult[i] = result.getBinaryQualityMeasure()
        print("sample ", sampleCollection[
              i].getName(), " result=", cramerVonMisesResult[i])
    print("cramerVonMisesResult=", repr(cramerVonMisesResult))

except:
    import sys
    print("t_NormalityTest_std.py", sys.exc_info()[0], sys.exc_info()[1])