1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
|
#! /usr/bin/env python
from __future__ import print_function
from openturns import *
TESTPREAMBLE()
try:
# First, build two functions from R^3->R
functions = list()
functions.append(NumericalMathFunction(["x1", "x2", "x3"], [
"y"], ["x1^3 * sin(x2 + 2.5 * x3) - (x1 + x2)^2 / (1.0 + x3^2)"]))
functions.append(NumericalMathFunction(
["x1", "x2", "x3"], ["y"], ["exp(-x1 * x2 + x3) / cos(1.0 + x2 * x3 - x1)"]))
# Second, build the weights
coefficients = NumericalSample(0, 3)
coefficients.add([1.5, 2.5, -0.5])
coefficients.add([-3.5, 0.5, -1.5])
# Third, build the function
myFunction = NumericalMathFunction(functions, coefficients)
inPoint = NumericalPoint([1.2, 2.3, 3.4])
print("myFunction=", myFunction)
print("Value at ", inPoint, "=", myFunction(inPoint))
print("Gradient at ", inPoint, "=", myFunction.gradient(inPoint))
PlatformInfo.SetNumericalPrecision(5)
print("Hessian at ", inPoint, "=", myFunction.hessian(inPoint))
for i in range(myFunction.getOutputDimension()):
print("Marginal ", i, "=", myFunction.getMarginal(i))
print("Marginal (0,1)=", myFunction.getMarginal([0, 1]))
print("Marginal (0,2)=", myFunction.getMarginal([0, 2]))
print("Marginal (1,2)=", myFunction.getMarginal([1, 2]))
except:
import sys
print("t_NumericalMathFunction_dual_linear_combination.py",
sys.exc_info()[0], sys.exc_info()[1])
|