File: t_NumericalMathFunction_python.py

package info (click to toggle)
openturns 1.7-3
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 38,588 kB
  • ctags: 26,495
  • sloc: cpp: 144,032; python: 26,855; ansic: 7,868; sh: 419; makefile: 263; yacc: 123; lex: 44
file content (175 lines) | stat: -rwxr-xr-x 4,018 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
#! /usr/bin/env python

from __future__ import print_function
from openturns import *

TESTPREAMBLE()


class FUNC(OpenTURNSPythonFunction):

    def __init__(self):
        super(FUNC, self).__init__(2, 1)
        self.setInputDescription(['R', 'S'])
        self.setOutputDescription(['T'])

    def _exec(self, X):

        Y = [X[0] + X[1]]
        return Y

F = FUNC()
print(('in_dim=' + str(F.getInputDimension())
       + ' out_dim=' + str(F.getOutputDimension())))

print((F((10, 5))))

print((F(((10, 5), (6, 7)))))


# Instance creation
myFunc = NumericalMathFunction(F)

# Copy constructor
newFunc = NumericalMathFunction(myFunc)

print(('myFunc input dimension= ' + str(myFunc.getInputDimension())))
print(('myFunc output dimension= ' + str(myFunc.getOutputDimension())))

inPt = NumericalPoint(2, 2.)
print((repr(inPt)))

outPt = myFunc(inPt)
print((repr(outPt)))

outPt = myFunc((10., 11.))
print((repr(outPt)))

inSample = NumericalSample(10, 2)
for i in range(10):
    inSample[i] = NumericalPoint((i, i))
print((repr(inSample)))

outSample = myFunc(inSample)
print((repr(outSample)))

outSample = myFunc(((100., 100.), (101., 101.), (102., 102.)))
print((repr(outSample)))

# Test cache behavior
myFunc.enableCache()
print(('calls = ' + str(myFunc.getEvaluationCallsNumber())
       + ' hits = ' + str(myFunc.getCacheHits())))
outPt = myFunc(inPt)
print(('T = ' + repr(outPt)))
print(('calls = ' + str(myFunc.getEvaluationCallsNumber())
       + ' hits = ' + str(myFunc.getCacheHits())))
outPt = myFunc(inPt)
print(('T = ' + repr(outPt)))
print(('calls = ' + str(myFunc.getEvaluationCallsNumber())
       + ' hits = ' + str(myFunc.getCacheHits())))

# duplicate one value
inSample[4] = inSample[5]

outSample = myFunc(inSample)
print(('T = ' + repr(outSample)))
print(('calls = ' + str(myFunc.getEvaluationCallsNumber())
       + ' hits = ' + str(myFunc.getCacheHits())))
outSample = myFunc(inSample)
print(('T = ' + repr(outSample)))
print(('calls = ' + str(myFunc.getEvaluationCallsNumber())
       + ' hits = ' + str(myFunc.getCacheHits())))

myFunc.clearCache()
outSample = myFunc(inSample)
print(('T = ' + repr(outSample)))
print(('calls = ' + str(myFunc.getEvaluationCallsNumber())
       + ' hits = ' + str(myFunc.getCacheHits())))

# test PythonFunction


def a_exec(X):
    Y = [0]
    Y[0] = X[0] + X[1]
    return Y


def a_exec_sample(Xs):
    Ys = []
    for X in Xs:
        Ys.append([X[0] + X[1]])
    return Ys

a_sample = ((100., 100.), (101., 101.), (102., 102.))

print('exec')
myFunc = PythonFunction(2, 1, a_exec)
outSample = myFunc(a_sample)
print(outSample)

print('exec + exec_sample')
myFunc = PythonFunction(2, 1, a_exec, a_exec_sample)
outSample = myFunc(a_sample)
print(outSample)

print('exec_sample only on a point')
myFunc = PythonFunction(2, 1, func_sample=a_exec_sample)
outSample = myFunc([100., 100.])
print(outSample)

print('exec_sample only on a sample')
myFunc = PythonFunction(2, 1, func_sample=a_exec_sample)
outSample = myFunc(a_sample)
print(outSample)


def a_grad(X):
    # wrong but allows to verify
    dY = [[1.], [-1.]]
    return dY

print('gradient')
myFunc = PythonFunction(2, 1, a_exec, gradient=a_grad)
grad = myFunc.gradient([100., 100.])
print(grad)


def a_hess(X):
    # wrong but allows to verify
    d2Y = [[[0.1], [0.3]], [[0.3], [0.1]]]
    return d2Y

print('hessian')
myFunc = PythonFunction(2, 1, a_exec, hessian=a_hess)
hess = myFunc.hessian([100., 100.])
print(hess)

print('no func')
try:
    myFunc = PythonFunction(2, 1)
    outSample = myFunc(a_sample)
except:
    # must raise exception
    print('no function detected : ok.')
else:
    raise Exception('no function not detected!')


def a_exec(X):
    Y = [0]
    if X[0] == 0.0:
        raise RuntimeError('Oups')
    elif X[0] == 1.0:
        '2' + 2
    return Y

for n in range(2):
    myFunc = PythonFunction(1, 1, a_exec)
    try:
        X = NumericalPoint(1, n)
        myFunc(X)
    except Exception as exc:
        # print exc
        print('exception handling: ok')