File: t_PosteriorRandomVector_std.py

package info (click to toggle)
openturns 1.7-3
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 38,588 kB
  • ctags: 26,495
  • sloc: cpp: 144,032; python: 26,855; ansic: 7,868; sh: 419; makefile: 263; yacc: 123; lex: 44
file content (73 lines) | stat: -rwxr-xr-x 1,827 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
#! /usr/bin/env python

from __future__ import print_function
from openturns import *

TESTPREAMBLE()
RandomGenerator.SetSeed(0)

try:

    # Log::Show(Log::ALL)

    # observations
    size = 10
    realDist = Normal(31., 1.2)

    data = realDist.getSample(size)

    # calibration parameters
    calibrationColl = [CalibrationStrategy()] * 2

    # proposal distribution
    proposalColl = DistributionCollection()
    mean_proposal = Uniform(-2.0, 2.0)
    std_proposal = Uniform(-2.0, 2.0)
    proposalColl.add(mean_proposal)
    proposalColl.add(std_proposal)

    # prior distribution
    mu0 = 25.

    sigma0 = 0.1
    mean_prior = Normal(mu0, sigma0)
    std_prior = Dirac(2.0)  # standard dev is known
    priorColl = DistributionCollection()
    priorColl.add(mean_prior)
    priorColl.add(std_prior)
    prior = ComposedDistribution(priorColl)

    # choose the initial state within the prior
    initialState = prior.getRealization()

    # conditional distribution
    conditional = Normal()

    # create a metropolis-hastings sampler
    sampler = RandomWalkMetropolisHastings(
        prior, conditional, data, initialState, proposalColl)
    sampler.setVerbose(True)
    sampler.setThinning(100)
    sampler.setBurnIn(1000)
    sampler.setCalibrationStrategyPerComponent(calibrationColl)

    # create a PosteriorRandomVector
    randomVector = PosteriorRandomVector(sampler)
    print("randomVector=", randomVector)

    # get the dimension
    dimension = randomVector.getDimension()
    print("dimension=", dimension)

    # get a realization
    realization = randomVector.getRealization()
    print("realization=", realization)

    # get a sample
    sample = randomVector.getSample(10)
    print("sample=", sample)

except:
    import sys
    import traceback
    traceback.print_exc(file=sys.stdout)