1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68
|
#! /usr/bin/env python
from __future__ import print_function
from openturns import *
TESTPREAMBLE()
RandomGenerator.SetSeed(0)
PlatformInfo.SetNumericalPrecision(6)
ResourceMap.SetAsUnsignedInteger("RandomMixture-DefaultMaxSize", 4000000)
try:
# 1) Analytical test ==> No FFT
coll = DistributionCollection(3)
coll[0] = Normal(0.0, 1.0)
coll[1] = Uniform(2.0, 5.0)
coll[2] = Uniform(2.0, 5.0)
weights = Matrix([[1.0, 2.0, 4.0], [3.0, 4.0, 5.0], [6.0, 0.0, 1.0]])
distribution = RandomMixture(coll, weights)
print("distribution=", repr(distribution))
print("range = ", distribution.getRange())
print("mean = ", distribution.getMean())
print("cov = ", distribution.getCovariance())
print("sigma = ", distribution.getStandardDeviation())
N = 4
points = Indices(3, N)
mean = distribution.getMean()
sigma = distribution.getStandardDeviation()
xMin = mean - 2.9 * sigma
xMax = mean + 2.9 * sigma
grid = NumericalSample()
result, grid = distribution.computePDF(xMin, xMax, points)
print("x;y;z;PDF")
for i in range(grid.getSize()):
print("%.6g;%.6g;%.6g;%.6g" %
(grid[i][0], grid[i][1], grid[i][2], result[i][0]))
# 2) 3D test using FFT
collection = DistributionCollection(0)
mixture = Mixture([Normal(2.0, 1.0), Normal(-2.0, 1.0)])
collection3D = DistributionCollection(0)
collection3D.add(Normal(0.0, 1.0))
collection3D.add(mixture)
collection3D.add(Uniform(0, 1))
collection3D.add(Uniform(0, 1))
#/ Set weights
weights = Matrix(
[[1.0, -0.05, 1.0, -0.5], [0.5, 1.0, -0.05, 0.3], [-0.5, -0.1, 1.2, -0.8]])
# Defining RandomMixture
dist_3D = RandomMixture(collection3D, weights)
mean = dist_3D.getMean()
sigma = dist_3D.getStandardDeviation()
print("distribution = ", repr(dist_3D))
print("range = ", dist_3D.getRange())
print("mean = ", dist_3D.getMean())
print("cov = ", dist_3D.getCovariance())
print("sigma = ", dist_3D.getStandardDeviation())
xMin = mean - 2.9 * sigma
xMax = mean + 2.9 * sigma
print("xMin = ", xMin)
print("xMax = ", xMax)
result, grid = dist_3D.computePDF(xMin, xMax, points)
for i in range(grid.getSize()):
print("%.6g;%.6g;%.6g;%.6g" %
(grid[i][0], grid[i][1], grid[i][2], result[i][0]))
except:
import sys
print("t_RandomMixture_grid3d.py", sys.exc_info()[0], sys.exc_info()[1])
|