1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329
|
testCases= [[class=Uniform name=Uniform dimension=1 a=-1 b=3,class=Uniform name=Uniform dimension=1 a=-1 b=3], [class=Normal name=Normal dimension=1 mean=class=NumericalPoint name=Unnamed dimension=1 values=[0] sigma=class=NumericalPoint name=Unnamed dimension=1 values=[1] correlationMatrix=class=CorrelationMatrix dimension=1 implementation=class=MatrixImplementation name=Unnamed rows=1 columns=1 values=[1],class=Normal name=Normal dimension=1 mean=class=NumericalPoint name=Unnamed dimension=1 values=[1] sigma=class=NumericalPoint name=Unnamed dimension=1 values=[2] correlationMatrix=class=CorrelationMatrix dimension=1 implementation=class=MatrixImplementation name=Unnamed rows=1 columns=1 values=[1],class=Normal name=Normal dimension=1 mean=class=NumericalPoint name=Unnamed dimension=1 values=[-2] sigma=class=NumericalPoint name=Unnamed dimension=1 values=[2] correlationMatrix=class=CorrelationMatrix dimension=1 implementation=class=MatrixImplementation name=Unnamed rows=1 columns=1 values=[1]], [class=Exponential name=Exponential dimension=1 lambda=1 gamma=0,class=Exponential name=Exponential dimension=1 lambda=1 gamma=0,class=Exponential name=Exponential dimension=1 lambda=1 gamma=0]]
references= [Triangular(a = -2, m = 2, b = 6),Normal(mu = -1, sigma = 3),Gamma(k = 3, lambda = 1, gamma = 0)]
Distribution class=RandomMixture name=RandomMixture distribution collection=[class=Triangular name=Triangular dimension=1 a=-2 m=2 b=6] weights =class=Matrix implementation=class=MatrixImplementation name=Unnamed rows=1 columns=1 values=[1] constant=class=NumericalPoint name=Unnamed dimension=1 values=[0]
Distribution RandomMixture(Triangular(a = -2, m = 2, b = 6))
Elliptical = False
Continuous = True
oneRealization= [2.5585]
oneSample first= [4.06345] last= [1.68661]
mean= [2.01813]
covariance= [[ 2.72012 ]]
Point= [0.5]
ddf = [0.0625]
ddf (ref)= [0.0625]
pdf =0.156250
pdf (FD)=0.156250
pdf (ref)=0.156250
cdf =0.195312
cdf (ref)=0.195312
characteristic function=0.382574 + 0.595823i
log characteristic function=-0.345207 + 1.000000i
quantile = [4.73509]
quantile (ref)= [4.73509]
cdf(quantile)=0.950000
mean = [2]
mean (ref)= [2]
standard deviation = [1.63299]
standard deviation (ref)= [1.63299]
skewness = [0]
skewness (ref)= [0]
kurtosis = [2.4]
kurtosis (ref)= [2.4]
covariance = [[ 2.66667 ]]
covariance (ref)= [[ 2.66667 ]]
parameters= [[Triangular_a : -2, Triangular_m : 2, Triangular_b : 6]]
Standard representative= RandomMixture(Triangular(a = -2, m = 2, b = 6))
blockMin= 5
blockMax= 20
maxSize= 4000000
alpha= 5.0
beta= 8.5
Distribution class=RandomMixture name=RandomMixture distribution collection=[class=Normal name=Normal dimension=1 mean=class=NumericalPoint name=Unnamed dimension=1 values=[-1] sigma=class=NumericalPoint name=Unnamed dimension=1 values=[3] correlationMatrix=class=CorrelationMatrix dimension=1 implementation=class=MatrixImplementation name=Unnamed rows=1 columns=1 values=[1]] weights =class=Matrix implementation=class=MatrixImplementation name=Unnamed rows=1 columns=1 values=[1] constant=class=NumericalPoint name=Unnamed dimension=1 values=[0]
Distribution RandomMixture(Normal(mu = -1, sigma = 3))
Elliptical = True
Continuous = True
oneRealization= [-3.87153]
oneSample first= [-4.03363] last= [0.331499]
mean= [-1.0314]
covariance= [[ 8.91043 ]]
Point= [0.5]
ddf = [-0.0195592]
ddf (ref)= [-0.0195592]
pdf =0.117355
pdf (FD)=0.117355
pdf (ref)=0.117355
cdf =0.691462
cdf (ref)=0.691462
characteristic function=0.284909 + -0.155647i
log characteristic function=-1.125000 + -0.500000i
quantile = [3.93456]
quantile (ref)= [3.93456]
cdf(quantile)=0.950000
mean = [-1]
mean (ref)= [-1]
standard deviation = [3]
standard deviation (ref)= [3]
skewness = [0]
skewness (ref)= [0]
kurtosis = [3]
kurtosis (ref)= [3]
covariance = [[ 9 ]]
covariance (ref)= [[ 9 ]]
parameters= [[Normal_mean_0 : -1, Normal_standard_deviation_0 : 3]]
Standard representative= RandomMixture(Normal(mu = -1, sigma = 3))
blockMin= 5
blockMax= 20
maxSize= 4000000
alpha= 5.0
beta= 8.5
Distribution class=RandomMixture name=RandomMixture distribution collection=[class=Exponential name=Exponential dimension=1 lambda=1 gamma=0,class=Exponential name=Exponential dimension=1 lambda=1 gamma=0,class=Exponential name=Exponential dimension=1 lambda=1 gamma=0] weights =class=Matrix implementation=class=MatrixImplementation name=Unnamed rows=1 columns=3 values=[1,1,1] constant=class=NumericalPoint name=Unnamed dimension=1 values=[0]
Distribution RandomMixture(Exponential(lambda = 1, gamma = 0) + Exponential(lambda = 1, gamma = 0) + Exponential(lambda = 1, gamma = 0))
Elliptical = False
Continuous = True
oneRealization= [0.665902]
oneSample first= [5.24685] last= [5.44861]
mean= [2.9992]
covariance= [[ 2.9295 ]]
Point= [0.5]
ddf = [0.227449]
ddf (ref)= [0.227449]
pdf =0.075816
pdf (FD)=0.075816
pdf (ref)=0.075816
cdf =0.014388
cdf (ref)=0.014388
characteristic function=0.128000 + 0.704000i
log characteristic function=-0.334715 + 1.390943i
quantile = [6.2957]
quantile (ref)= [6.29579]
cdf(quantile)=0.950000
mean = [3]
mean (ref)= [3]
standard deviation = [1.73205]
standard deviation (ref)= [1.73205]
skewness = [1.1547]
skewness (ref)= [1.1547]
kurtosis = [5]
kurtosis (ref)= [5]
covariance = [[ 3 ]]
covariance (ref)= [[ 3 ]]
parameters= [[Exponential_lambda : 1, Exponential_gamma : 0, Exponential_lambda : 1, Exponential_gamma : 0, Exponential_lambda : 1, Exponential_gamma : 0]]
Standard representative= RandomMixture(Exponential(lambda = 1, gamma = 0) + Exponential(lambda = 1, gamma = 0) + Exponential(lambda = 1, gamma = 0))
blockMin= 5
blockMax= 20
maxSize= 4000000
alpha= 5.0
beta= 8.5
distribution= class=RandomMixture name=RandomMixture distribution collection=[class=Triangular name=Triangular dimension=1 a=2 m=6 b=10,class=Exponential name=Exponential dimension=1 lambda=2 gamma=-3,class=Triangular name=Triangular dimension=1 a=2 m=6 b=10,class=Exponential name=Exponential dimension=1 lambda=2 gamma=-3,class=Gamma name=Gamma dimension=1 k=3 lambda=4 gamma=-2,class=Normal name=Normal dimension=1 mean=class=NumericalPoint name=Unnamed dimension=1 values=[5.25] sigma=class=NumericalPoint name=Unnamed dimension=1 values=[13.4629] correlationMatrix=class=CorrelationMatrix dimension=1 implementation=class=MatrixImplementation name=Unnamed rows=1 columns=1 values=[1]] weights =class=Matrix implementation=class=MatrixImplementation name=Unnamed rows=1 columns=6 values=[1,1.5,-2.5,-3.75,2.5,1] constant=class=NumericalPoint name=Unnamed dimension=1 values=[0]
distribution= RandomMixture(Triangular(a = 2, m = 6, b = 10) + 1.5 * Exponential(lambda = 2, gamma = -3) - 2.5 * Triangular(a = 2, m = 6, b = 10) - 3.75 * Exponential(lambda = 2, gamma = -3) + 2.5 * Gamma(k = 3, lambda = 4, gamma = -2) + Normal(mu = 5.25, sigma = 13.4629))
pdf( -44.290678 )=0.000311
pdf( -34.726083 )=0.001834
pdf( -25.161488 )=0.006936
pdf( -15.596893 )=0.016849
pdf( -6.032298 )=0.026283
pdf( 3.532298 )=0.026313
pdf( 13.096893 )=0.016889
pdf( 22.661488 )=0.006940
pdf( 32.226083 )=0.001821
pdf( 41.790678 )=0.000305
projections= [Normal(mu = -1.24816, sigma = 24.1247),Gamma(k = 9.52102, lambda = 0.127903, gamma = -75.6876),Triangular(a = -75.6876, m = -1.15189, b = 73.095),Uniform(a = -75.6876, b = 73.095),Exponential(lambda = 0.0134337, gamma = -75.6876)]
norms= [0.122161,0.139869,0.185637,0.291551,0.444576]
distribution = RandomMixture(
Normal(mu = 0, sigma = 1) - 2 * Normal(mu = 0, sigma = 1) + Normal(mu = 0, sigma = 1)
Normal(mu = 0, sigma = 1) + Normal(mu = 0, sigma = 1) - 3 * Normal(mu = 0, sigma = 1)
)
range = [-20.8207, 20.8207]
[-28.1913, 28.1913]
mean = [0,0]
cov = [[ 6 -4 ]
[ -4 11 ]]
sigma = [2.44949,3.31662]
pdf = 0.0225079
pdf (ref)= 0.0225079
pdf = 0.0139715
pdf (ref)= 0.0139715
pdf = 0.00334166
pdf (ref)= 0.00334166
pdf = 0.000307961
pdf (ref)= 0.000307961
pdf = 1.09356e-05
pdf (ref)= 1.09356e-05
pdf = 1.49624e-07
pdf (ref)= 1.49624e-07
pdf = 0.0139715
pdf (ref)= 0.0139715
pdf = 0.00542272
pdf (ref)= 0.00542272
pdf = 0.000810972
pdf (ref)= 0.000810972
pdf = 4.67313e-05
pdf (ref)= 4.67313e-05
pdf = 1.03758e-06
pdf (ref)= 1.03758e-06
pdf = 8.8767e-09
pdf (ref)= 8.8767e-09
pdf = 0.00334166
pdf (ref)= 0.00334166
pdf = 0.000810972
pdf (ref)= 0.000810972
pdf = 7.58338e-05
pdf (ref)= 7.58338e-05
pdf = 2.73233e-06
pdf (ref)= 2.73233e-06
pdf = 3.7933e-08
pdf (ref)= 3.7933e-08
pdf = 2.02915e-10
pdf (ref)= 2.02915e-10
pdf = 0.000307961
pdf (ref)= 0.000307961
pdf = 4.67313e-05
pdf (ref)= 4.67313e-05
pdf = 2.73233e-06
pdf (ref)= 2.73233e-06
pdf = 6.15563e-08
pdf (ref)= 6.15563e-08
pdf = 5.34349e-10
pdf (ref)= 5.34349e-10
pdf = 1.78727e-12
pdf (ref)= 1.78727e-12
pdf = 1.09356e-05
pdf (ref)= 1.09356e-05
pdf = 1.03758e-06
pdf (ref)= 1.03758e-06
pdf = 3.7933e-08
pdf (ref)= 3.7933e-08
pdf = 5.34349e-10
pdf (ref)= 5.34349e-10
pdf = 2.90032e-12
pdf (ref)= 2.90032e-12
pdf = 1.49624e-07
pdf (ref)= 1.49624e-07
pdf = 8.8767e-09
pdf (ref)= 8.8767e-09
pdf = 2.02915e-10
pdf (ref)= 2.02915e-10
pdf = 1.78727e-12
pdf (ref)= 1.78727e-12
new distribution = RandomMixture(
Uniform(a = 0, b = 1) - 2 * Uniform(a = 0, b = 1) + Uniform(a = 0, b = 1)
Uniform(a = 0, b = 1) + Uniform(a = 0, b = 1) - 3 * Uniform(a = 0, b = 1)
)
range = [-2, 2]
[-3, 2]
mean = [0,-0.5]
cov = [[ 0.5 -0.333333 ]
[ -0.333333 0.916667 ]]
sigma = [0.707107,0.957427]
pdf = 0.200008
pdf = 0.199953
pdf = 0.18257
pdf = 0.161365
pdf = 0.140147
pdf = 0.11893
pdf = 0.200012
pdf = 0.194237
pdf = 0.172999
pdf = 0.151788
pdf = 0.130572
pdf = 0.109357
pdf = 0.200032
pdf = 0.184647
pdf = 0.163427
pdf = 0.142211
pdf = 0.120996
pdf = 0.099784
pdf = 0.190057
pdf = 0.175051
pdf = 0.153858
pdf = 0.132633
pdf = 0.111423
pdf = 0.0902108
pdf = 0.164538
pdf = 0.155122
pdf = 0.144316
pdf = 0.123061
pdf = 0.101846
pdf = 0.0806394
pdf = 0.13901
pdf = 0.129584
pdf = 0.120154
pdf = 0.110695
pdf = 0.0922665
pdf = 0.0710676
3D distribution = RandomMixture(
Normal(mu = 0, sigma = 1) - 0.05 * Mixture((w = 0.5, d = Normal(mu = 2, sigma = 1)), (w = 0.5, d = Normal(mu = -2, sigma = 1))) + Uniform(a = 0, b = 1) - 0.5 * Uniform(a = 0, b = 1)
0.5 * Normal(mu = 0, sigma = 1) + Mixture((w = 0.5, d = Normal(mu = 2, sigma = 1)), (w = 0.5, d = Normal(mu = -2, sigma = 1))) - 0.05 * Uniform(a = 0, b = 1) + 0.3 * Uniform(a = 0, b = 1)
-0.5 * Normal(mu = 0, sigma = 1) - 0.1 * Mixture((w = 0.5, d = Normal(mu = 2, sigma = 1)), (w = 0.5, d = Normal(mu = -2, sigma = 1))) + 1.2 * Uniform(a = 0, b = 1) - 0.8 * Uniform(a = 0, b = 1)
)
range = [-8.63316, 9.13316]
[-13.5259, 13.7759]
[-5.59038, 5.99038]
mean = [0.25,0.125,0.2]
cov = [[ 1.11667 0.233333 -0.341667 ]
[ 0.233333 5.25771 -0.775 ]
[ -0.341667 -0.775 0.473333 ]]
sigma = [1.05672,2.29297,0.687992]
pdf = 0.0128814
pdf = 0.0128655
pdf = 0.0122294
pdf = 0.00984818
pdf = 0.0234842
pdf = 0.020225
pdf = 0.0150424
pdf = 0.00949663
pdf = 0.0432697
pdf = 0.0385232
pdf = 0.0281784
pdf = 0.0180749
pdf = 0.044762
pdf = 0.0406428
pdf = 0.0308978
pdf = 0.0210441
pdf = 0.0129975
pdf = 0.0121201
pdf = 0.00968603
pdf = 0.0071769
pdf = 0.0247237
pdf = 0.0192342
pdf = 0.0131031
pdf = 0.00795833
pdf = 0.0400697
pdf = 0.0318194
pdf = 0.0226119
pdf = 0.0136759
pdf = 0.0348167
pdf = 0.0294142
pdf = 0.0218493
pdf = 0.0134862
pdf = 0.011291
pdf = 0.0091266
pdf = 0.00689789
pdf = 0.00454873
pdf = 0.0207392
pdf = 0.0154986
pdf = 0.00997757
pdf = 0.00537413
pdf = 0.0295955
pdf = 0.0230235
pdf = 0.0149557
pdf = 0.00725254
pdf = 0.0229623
pdf = 0.0183174
pdf = 0.0117906
pdf = 0.00422686
pdf = 0.00832467
pdf = 0.00628249
pdf = 0.00406557
pdf = 0.00186481
pdf = 0.0152402
pdf = 0.0104641
pdf = 0.00556431
pdf = 0.00128214
pdf = 0.0189734
pdf = 0.0129675
pdf = 0.00534378
pdf = 0.000220278
pdf = 0.0123168
pdf = 0.00770527
pdf = 0.00160947
pdf = 0
|