File: t_RandomMixture_std.expout

package info (click to toggle)
openturns 1.7-3
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 38,588 kB
  • ctags: 26,495
  • sloc: cpp: 144,032; python: 26,855; ansic: 7,868; sh: 419; makefile: 263; yacc: 123; lex: 44
file content (329 lines) | stat: -rw-r--r-- 12,563 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
testCases= [[class=Uniform name=Uniform dimension=1 a=-1 b=3,class=Uniform name=Uniform dimension=1 a=-1 b=3], [class=Normal name=Normal dimension=1 mean=class=NumericalPoint name=Unnamed dimension=1 values=[0] sigma=class=NumericalPoint name=Unnamed dimension=1 values=[1] correlationMatrix=class=CorrelationMatrix dimension=1 implementation=class=MatrixImplementation name=Unnamed rows=1 columns=1 values=[1],class=Normal name=Normal dimension=1 mean=class=NumericalPoint name=Unnamed dimension=1 values=[1] sigma=class=NumericalPoint name=Unnamed dimension=1 values=[2] correlationMatrix=class=CorrelationMatrix dimension=1 implementation=class=MatrixImplementation name=Unnamed rows=1 columns=1 values=[1],class=Normal name=Normal dimension=1 mean=class=NumericalPoint name=Unnamed dimension=1 values=[-2] sigma=class=NumericalPoint name=Unnamed dimension=1 values=[2] correlationMatrix=class=CorrelationMatrix dimension=1 implementation=class=MatrixImplementation name=Unnamed rows=1 columns=1 values=[1]], [class=Exponential name=Exponential dimension=1 lambda=1 gamma=0,class=Exponential name=Exponential dimension=1 lambda=1 gamma=0,class=Exponential name=Exponential dimension=1 lambda=1 gamma=0]]
references= [Triangular(a = -2, m = 2, b = 6),Normal(mu = -1, sigma = 3),Gamma(k = 3, lambda = 1, gamma = 0)]
Distribution  class=RandomMixture name=RandomMixture distribution collection=[class=Triangular name=Triangular dimension=1 a=-2 m=2 b=6] weights =class=Matrix implementation=class=MatrixImplementation name=Unnamed rows=1 columns=1 values=[1] constant=class=NumericalPoint name=Unnamed dimension=1 values=[0]
Distribution  RandomMixture(Triangular(a = -2, m = 2, b = 6))
Elliptical =  False
Continuous =  True
oneRealization= [2.5585]
oneSample first= [4.06345]  last= [1.68661]
mean= [2.01813]
covariance= [[ 2.72012 ]]
Point=  [0.5]
ddf      = [0.0625]
ddf (ref)= [0.0625]
pdf      =0.156250
pdf  (FD)=0.156250
pdf (ref)=0.156250
cdf      =0.195312
cdf (ref)=0.195312
characteristic function=0.382574 + 0.595823i
log characteristic function=-0.345207 + 1.000000i
quantile      = [4.73509]
quantile (ref)= [4.73509]
cdf(quantile)=0.950000
mean      = [2]
mean (ref)= [2]
standard deviation      = [1.63299]
standard deviation (ref)= [1.63299]
skewness      = [0]
skewness (ref)= [0]
kurtosis      = [2.4]
kurtosis (ref)= [2.4]
covariance      = [[ 2.66667 ]]
covariance (ref)= [[ 2.66667 ]]
parameters= [[Triangular_a : -2, Triangular_m : 2, Triangular_b : 6]]
Standard representative= RandomMixture(Triangular(a = -2, m = 2, b = 6))
blockMin= 5
blockMax= 20
maxSize= 4000000
alpha= 5.0
beta= 8.5
Distribution  class=RandomMixture name=RandomMixture distribution collection=[class=Normal name=Normal dimension=1 mean=class=NumericalPoint name=Unnamed dimension=1 values=[-1] sigma=class=NumericalPoint name=Unnamed dimension=1 values=[3] correlationMatrix=class=CorrelationMatrix dimension=1 implementation=class=MatrixImplementation name=Unnamed rows=1 columns=1 values=[1]] weights =class=Matrix implementation=class=MatrixImplementation name=Unnamed rows=1 columns=1 values=[1] constant=class=NumericalPoint name=Unnamed dimension=1 values=[0]
Distribution  RandomMixture(Normal(mu = -1, sigma = 3))
Elliptical =  True
Continuous =  True
oneRealization= [-3.87153]
oneSample first= [-4.03363]  last= [0.331499]
mean= [-1.0314]
covariance= [[ 8.91043 ]]
Point=  [0.5]
ddf      = [-0.0195592]
ddf (ref)= [-0.0195592]
pdf      =0.117355
pdf  (FD)=0.117355
pdf (ref)=0.117355
cdf      =0.691462
cdf (ref)=0.691462
characteristic function=0.284909 + -0.155647i
log characteristic function=-1.125000 + -0.500000i
quantile      = [3.93456]
quantile (ref)= [3.93456]
cdf(quantile)=0.950000
mean      = [-1]
mean (ref)= [-1]
standard deviation      = [3]
standard deviation (ref)= [3]
skewness      = [0]
skewness (ref)= [0]
kurtosis      = [3]
kurtosis (ref)= [3]
covariance      = [[ 9 ]]
covariance (ref)= [[ 9 ]]
parameters= [[Normal_mean_0 : -1, Normal_standard_deviation_0 : 3]]
Standard representative= RandomMixture(Normal(mu = -1, sigma = 3))
blockMin= 5
blockMax= 20
maxSize= 4000000
alpha= 5.0
beta= 8.5
Distribution  class=RandomMixture name=RandomMixture distribution collection=[class=Exponential name=Exponential dimension=1 lambda=1 gamma=0,class=Exponential name=Exponential dimension=1 lambda=1 gamma=0,class=Exponential name=Exponential dimension=1 lambda=1 gamma=0] weights =class=Matrix implementation=class=MatrixImplementation name=Unnamed rows=1 columns=3 values=[1,1,1] constant=class=NumericalPoint name=Unnamed dimension=1 values=[0]
Distribution  RandomMixture(Exponential(lambda = 1, gamma = 0) + Exponential(lambda = 1, gamma = 0) + Exponential(lambda = 1, gamma = 0))
Elliptical =  False
Continuous =  True
oneRealization= [0.665902]
oneSample first= [5.24685]  last= [5.44861]
mean= [2.9992]
covariance= [[ 2.9295 ]]
Point=  [0.5]
ddf      = [0.227449]
ddf (ref)= [0.227449]
pdf      =0.075816
pdf  (FD)=0.075816
pdf (ref)=0.075816
cdf      =0.014388
cdf (ref)=0.014388
characteristic function=0.128000 + 0.704000i
log characteristic function=-0.334715 + 1.390943i
quantile      = [6.2957]
quantile (ref)= [6.29579]
cdf(quantile)=0.950000
mean      = [3]
mean (ref)= [3]
standard deviation      = [1.73205]
standard deviation (ref)= [1.73205]
skewness      = [1.1547]
skewness (ref)= [1.1547]
kurtosis      = [5]
kurtosis (ref)= [5]
covariance      = [[ 3 ]]
covariance (ref)= [[ 3 ]]
parameters= [[Exponential_lambda : 1, Exponential_gamma : 0, Exponential_lambda : 1, Exponential_gamma : 0, Exponential_lambda : 1, Exponential_gamma : 0]]
Standard representative= RandomMixture(Exponential(lambda = 1, gamma = 0) + Exponential(lambda = 1, gamma = 0) + Exponential(lambda = 1, gamma = 0))
blockMin= 5
blockMax= 20
maxSize= 4000000
alpha= 5.0
beta= 8.5
distribution= class=RandomMixture name=RandomMixture distribution collection=[class=Triangular name=Triangular dimension=1 a=2 m=6 b=10,class=Exponential name=Exponential dimension=1 lambda=2 gamma=-3,class=Triangular name=Triangular dimension=1 a=2 m=6 b=10,class=Exponential name=Exponential dimension=1 lambda=2 gamma=-3,class=Gamma name=Gamma dimension=1 k=3 lambda=4 gamma=-2,class=Normal name=Normal dimension=1 mean=class=NumericalPoint name=Unnamed dimension=1 values=[5.25] sigma=class=NumericalPoint name=Unnamed dimension=1 values=[13.4629] correlationMatrix=class=CorrelationMatrix dimension=1 implementation=class=MatrixImplementation name=Unnamed rows=1 columns=1 values=[1]] weights =class=Matrix implementation=class=MatrixImplementation name=Unnamed rows=1 columns=6 values=[1,1.5,-2.5,-3.75,2.5,1] constant=class=NumericalPoint name=Unnamed dimension=1 values=[0]
distribution= RandomMixture(Triangular(a = 2, m = 6, b = 10) + 1.5 * Exponential(lambda = 2, gamma = -3) - 2.5 * Triangular(a = 2, m = 6, b = 10) - 3.75 * Exponential(lambda = 2, gamma = -3) + 2.5 * Gamma(k = 3, lambda = 4, gamma = -2) + Normal(mu = 5.25, sigma = 13.4629))
pdf( -44.290678 )=0.000311
pdf( -34.726083 )=0.001834
pdf( -25.161488 )=0.006936
pdf( -15.596893 )=0.016849
pdf( -6.032298 )=0.026283
pdf( 3.532298 )=0.026313
pdf( 13.096893 )=0.016889
pdf( 22.661488 )=0.006940
pdf( 32.226083 )=0.001821
pdf( 41.790678 )=0.000305
projections= [Normal(mu = -1.24816, sigma = 24.1247),Gamma(k = 9.52102, lambda = 0.127903, gamma = -75.6876),Triangular(a = -75.6876, m = -1.15189, b = 73.095),Uniform(a = -75.6876, b = 73.095),Exponential(lambda = 0.0134337, gamma = -75.6876)]
norms= [0.122161,0.139869,0.185637,0.291551,0.444576]
distribution =  RandomMixture(
Normal(mu = 0, sigma = 1) - 2 * Normal(mu = 0, sigma = 1) + Normal(mu = 0, sigma = 1)
Normal(mu = 0, sigma = 1) + Normal(mu = 0, sigma = 1) - 3 * Normal(mu = 0, sigma = 1)
)
range =  [-20.8207, 20.8207]
[-28.1913, 28.1913]
mean =  [0,0]
cov =  [[  6 -4 ]
 [ -4 11 ]]
sigma =  [2.44949,3.31662]
pdf      = 0.0225079
pdf (ref)= 0.0225079
pdf      = 0.0139715
pdf (ref)= 0.0139715
pdf      = 0.00334166
pdf (ref)= 0.00334166
pdf      = 0.000307961
pdf (ref)= 0.000307961
pdf      = 1.09356e-05
pdf (ref)= 1.09356e-05
pdf      = 1.49624e-07
pdf (ref)= 1.49624e-07
pdf      = 0.0139715
pdf (ref)= 0.0139715
pdf      = 0.00542272
pdf (ref)= 0.00542272
pdf      = 0.000810972
pdf (ref)= 0.000810972
pdf      = 4.67313e-05
pdf (ref)= 4.67313e-05
pdf      = 1.03758e-06
pdf (ref)= 1.03758e-06
pdf      = 8.8767e-09
pdf (ref)= 8.8767e-09
pdf      = 0.00334166
pdf (ref)= 0.00334166
pdf      = 0.000810972
pdf (ref)= 0.000810972
pdf      = 7.58338e-05
pdf (ref)= 7.58338e-05
pdf      = 2.73233e-06
pdf (ref)= 2.73233e-06
pdf      = 3.7933e-08
pdf (ref)= 3.7933e-08
pdf      = 2.02915e-10
pdf (ref)= 2.02915e-10
pdf      = 0.000307961
pdf (ref)= 0.000307961
pdf      = 4.67313e-05
pdf (ref)= 4.67313e-05
pdf      = 2.73233e-06
pdf (ref)= 2.73233e-06
pdf      = 6.15563e-08
pdf (ref)= 6.15563e-08
pdf      = 5.34349e-10
pdf (ref)= 5.34349e-10
pdf      = 1.78727e-12
pdf (ref)= 1.78727e-12
pdf      = 1.09356e-05
pdf (ref)= 1.09356e-05
pdf      = 1.03758e-06
pdf (ref)= 1.03758e-06
pdf      = 3.7933e-08
pdf (ref)= 3.7933e-08
pdf      = 5.34349e-10
pdf (ref)= 5.34349e-10
pdf      = 2.90032e-12
pdf (ref)= 2.90032e-12
pdf      = 1.49624e-07
pdf (ref)= 1.49624e-07
pdf      = 8.8767e-09
pdf (ref)= 8.8767e-09
pdf      = 2.02915e-10
pdf (ref)= 2.02915e-10
pdf      = 1.78727e-12
pdf (ref)= 1.78727e-12
new distribution =  RandomMixture(
Uniform(a = 0, b = 1) - 2 * Uniform(a = 0, b = 1) + Uniform(a = 0, b = 1)
Uniform(a = 0, b = 1) + Uniform(a = 0, b = 1) - 3 * Uniform(a = 0, b = 1)
)
range =  [-2, 2]
[-3, 2]
mean =  [0,-0.5]
cov =  [[  0.5      -0.333333 ]
 [ -0.333333  0.916667 ]]
sigma =  [0.707107,0.957427]
pdf      = 0.200008
pdf      = 0.199953
pdf      = 0.18257
pdf      = 0.161365
pdf      = 0.140147
pdf      = 0.11893
pdf      = 0.200012
pdf      = 0.194237
pdf      = 0.172999
pdf      = 0.151788
pdf      = 0.130572
pdf      = 0.109357
pdf      = 0.200032
pdf      = 0.184647
pdf      = 0.163427
pdf      = 0.142211
pdf      = 0.120996
pdf      = 0.099784
pdf      = 0.190057
pdf      = 0.175051
pdf      = 0.153858
pdf      = 0.132633
pdf      = 0.111423
pdf      = 0.0902108
pdf      = 0.164538
pdf      = 0.155122
pdf      = 0.144316
pdf      = 0.123061
pdf      = 0.101846
pdf      = 0.0806394
pdf      = 0.13901
pdf      = 0.129584
pdf      = 0.120154
pdf      = 0.110695
pdf      = 0.0922665
pdf      = 0.0710676
3D distribution =  RandomMixture(
Normal(mu = 0, sigma = 1) - 0.05 * Mixture((w = 0.5, d = Normal(mu = 2, sigma = 1)), (w = 0.5, d = Normal(mu = -2, sigma = 1))) + Uniform(a = 0, b = 1) - 0.5 * Uniform(a = 0, b = 1)
0.5 * Normal(mu = 0, sigma = 1) + Mixture((w = 0.5, d = Normal(mu = 2, sigma = 1)), (w = 0.5, d = Normal(mu = -2, sigma = 1))) - 0.05 * Uniform(a = 0, b = 1) + 0.3 * Uniform(a = 0, b = 1)
-0.5 * Normal(mu = 0, sigma = 1) - 0.1 * Mixture((w = 0.5, d = Normal(mu = 2, sigma = 1)), (w = 0.5, d = Normal(mu = -2, sigma = 1))) + 1.2 * Uniform(a = 0, b = 1) - 0.8 * Uniform(a = 0, b = 1)
)
range =  [-8.63316, 9.13316]
[-13.5259, 13.7759]
[-5.59038, 5.99038]
mean =  [0.25,0.125,0.2]
cov =  [[  1.11667   0.233333 -0.341667 ]
 [  0.233333  5.25771  -0.775    ]
 [ -0.341667 -0.775     0.473333 ]]
sigma =  [1.05672,2.29297,0.687992]
pdf      = 0.0128814
pdf      = 0.0128655
pdf      = 0.0122294
pdf      = 0.00984818
pdf      = 0.0234842
pdf      = 0.020225
pdf      = 0.0150424
pdf      = 0.00949663
pdf      = 0.0432697
pdf      = 0.0385232
pdf      = 0.0281784
pdf      = 0.0180749
pdf      = 0.044762
pdf      = 0.0406428
pdf      = 0.0308978
pdf      = 0.0210441
pdf      = 0.0129975
pdf      = 0.0121201
pdf      = 0.00968603
pdf      = 0.0071769
pdf      = 0.0247237
pdf      = 0.0192342
pdf      = 0.0131031
pdf      = 0.00795833
pdf      = 0.0400697
pdf      = 0.0318194
pdf      = 0.0226119
pdf      = 0.0136759
pdf      = 0.0348167
pdf      = 0.0294142
pdf      = 0.0218493
pdf      = 0.0134862
pdf      = 0.011291
pdf      = 0.0091266
pdf      = 0.00689789
pdf      = 0.00454873
pdf      = 0.0207392
pdf      = 0.0154986
pdf      = 0.00997757
pdf      = 0.00537413
pdf      = 0.0295955
pdf      = 0.0230235
pdf      = 0.0149557
pdf      = 0.00725254
pdf      = 0.0229623
pdf      = 0.0183174
pdf      = 0.0117906
pdf      = 0.00422686
pdf      = 0.00832467
pdf      = 0.00628249
pdf      = 0.00406557
pdf      = 0.00186481
pdf      = 0.0152402
pdf      = 0.0104641
pdf      = 0.00556431
pdf      = 0.00128214
pdf      = 0.0189734
pdf      = 0.0129675
pdf      = 0.00534378
pdf      = 0.000220278
pdf      = 0.0123168
pdf      = 0.00770527
pdf      = 0.00160947
pdf      = 0