File: t_RandomVector_composite.expout

package info (click to toggle)
openturns 1.7-3
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 38,588 kB
  • ctags: 26,495
  • sloc: cpp: 144,032; python: 26,855; ansic: 7,868; sh: 419; makefile: 263; yacc: 123; lex: 44
file content (15 lines) | stat: -rw-r--r-- 3,585 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
distribution =  class=Normal name=Normal dimension=4 mean=class=NumericalPoint name=Unnamed dimension=4 values=[1,1,1,1] sigma=class=NumericalPoint name=Unnamed dimension=4 values=[2,2,2,2] correlationMatrix=class=CorrelationMatrix dimension=4 implementation=class=MatrixImplementation name=Unnamed rows=4 columns=4 values=[1,0.5,0,0,0.5,1,0.5,0,0,0.5,1,0.5,0,0,0.5,1]
X= class=RandomVector implementation=class=UsualRandomVector distribution=class=Normal name=Normal dimension=4 mean=class=NumericalPoint name=Unnamed dimension=4 values=[1,1,1,1] sigma=class=NumericalPoint name=Unnamed dimension=4 values=[2,2,2,2] correlationMatrix=class=CorrelationMatrix dimension=4 implementation=class=MatrixImplementation name=Unnamed rows=4 columns=4 values=[1,0.5,0,0,0.5,1,0.5,0,0,0.5,1,0.5,0,0,0.5,1]
is composite?  False
X dimension= 4
X realization (first )= class=NumericalPoint name=Unnamed dimension=4 values=[2.2164,-0.584874,-1.17774,2.36926]
X realization (second)= class=NumericalPoint name=Unnamed dimension=4 values=[-3.36277,-0.575095,0.82447,2.8377]
X realization (third )= class=NumericalPoint name=Unnamed dimension=4 values=[2.62134,3.18445,1.14749,0.836432]
X sample = class=NumericalSample name=Normal implementation=class=NumericalSampleImplementation name=Normal size=5 dimension=4 description=[marginal 1,marginal 2,marginal 3,marginal 4] data=[[-3.58012,-3.51208,-2.62348,-0.750139],[2.99159,1.75425,-0.0758382,1.01827],[1.64585,2.09505,-0.180423,-1.62596],[1.94723,1.25625,1.42895,4.24855],[1.14041,-0.283159,-1.0805,-0.265102]]
Y= class=RandomVector implementation=class=CompositeRandomVector function=class=NumericalMathFunction name=Unnamed implementation=class=NumericalMathFunctionImplementation name=Unnamed description=[x1,x2,x3,x4,y1,y2] evaluationImplementation=class=AnalyticalNumericalMathEvaluationImplementation name=Unnamed inputVariablesNames=[x1,x2,x3,x4] outputVariablesNames=[y1,y2] formulas=[(x1*x1+x2^3*x1)/(2*x3*x3+x4^4+1),cos(x2*x2+x4)/(x1*x1+1+x3^4)] gradientImplementation=class=AnalyticalNumericalMathGradientImplementation name=Unnamed evaluation=class=AnalyticalNumericalMathEvaluationImplementation name=Unnamed inputVariablesNames=[x1,x2,x3,x4] outputVariablesNames=[y1,y2] formulas=[(x1*x1+x2^3*x1)/(2*x3*x3+x4^4+1),cos(x2*x2+x4)/(x1*x1+1+x3^4)] hessianImplementation=class=AnalyticalNumericalMathHessianImplementation name=Unnamed evaluation=class=AnalyticalNumericalMathEvaluationImplementation name=Unnamed inputVariablesNames=[x1,x2,x3,x4] outputVariablesNames=[y1,y2] formulas=[(x1*x1+x2^3*x1)/(2*x3*x3+x4^4+1),cos(x2*x2+x4)/(x1*x1+1+x3^4)] antecedent=class=UsualRandomVector distribution=class=Normal name=Normal dimension=4 mean=class=NumericalPoint name=Unnamed dimension=4 values=[1,1,1,1] sigma=class=NumericalPoint name=Unnamed dimension=4 values=[2,2,2,2] correlationMatrix=class=CorrelationMatrix dimension=4 implementation=class=MatrixImplementation name=Unnamed rows=4 columns=4 values=[1,0.5,0,0,0.5,1,0.5,0,0,0.5,1,0.5,0,0,0.5,1]
is composite?  True
Y dimension= 2
Y realization (first )= class=NumericalPoint name=Unnamed dimension=2 values=[0.0185054,-0.00219281]
Y realization (second)= class=NumericalPoint name=Unnamed dimension=2 values=[0.619855,0.0106974]
Y realization (third )= class=NumericalPoint name=Unnamed dimension=2 values=[2.8838,0.219604]
Y sample = class=NumericalSample name=Unnamed implementation=class=NumericalSampleImplementation name=Unnamed size=5 dimension=2 description=[y1,y2] data=[[1.50051,0.0377816],[0.834465,0.0103864],[-0.048251,0.0320782],[7.45941,-0.0328878],[0.53899,-0.0490936]]