File: t_RandomVector_conditional.py

package info (click to toggle)
openturns 1.7-3
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 38,588 kB
  • ctags: 26,495
  • sloc: cpp: 144,032; python: 26,855; ansic: 7,868; sh: 419; makefile: 263; yacc: 123; lex: 44
file content (39 lines) | stat: -rwxr-xr-x 1,203 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
#! /usr/bin/env python

from __future__ import print_function
import openturns as ot

# We create a distribution
distribution = ot.Normal()

print('distribution = ', repr(distribution))

aCollection = []
aCollection.append(ot.Normal(0.0, 1.0))
aCollection.append(ot.Uniform(1.0, 1.5))
distributionParameters = ot.ComposedDistribution(aCollection)
randomParameters = ot.RandomVector(distributionParameters)

print('random parameters=', randomParameters)

# We create a distribution-based conditional RandomVector
vect = ot.ConditionalRandomVector(distribution, randomParameters)
print('vect=', vect)

# Check standard methods of class RandomVector
print('vect dimension=', vect.getDimension())
p = ot.NumericalPoint()
r = vect.getRealization(p)
print('vect realization=', repr(r))
print('parameters value=', repr(p))
distribution.setParameter(p)
ot.RandomGenerator.SetSeed(0)
# Generate a parameter set to put the random generator into the proper
# state
randomParameters.getRealization()
# The realization of the distribution should be equal to the realization
# of the conditional vector
print('dist realization=', repr(distribution.getRealization()))

print('vect sample =', repr(vect.getSample(5)))