File: t_SecondOrderModel_std.py

package info (click to toggle)
openturns 1.7-3
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 38,588 kB
  • ctags: 26,495
  • sloc: cpp: 144,032; python: 26,855; ansic: 7,868; sh: 419; makefile: 263; yacc: 123; lex: 44
file content (52 lines) | stat: -rwxr-xr-x 1,558 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
#! /usr/bin/env python

from __future__ import print_function
from openturns import *

TESTPREAMBLE()
RandomGenerator.SetSeed(0)

try:

    # Default dimension parameter to evaluate the model
    dimension = 1
    spatialDimension = 1

    # Amplitude values
    amplitude = NumericalPoint(dimension, 1.0)

    # Scale values
    scale = NumericalPoint(dimension, 1.0)

    # Covariance model
    myCovarianceModel = ExponentialModel(spatialDimension, amplitude, scale)
    print("myCovarianceModel = ", myCovarianceModel)

    # Spectral model
    mySpectralModel = CauchyModel(amplitude, scale)
    print("mySpectralModel = ", mySpectralModel)

    # We build the second order model using covariance and spectral models
    myModel = SecondOrderModel(myCovarianceModel, mySpectralModel)
    print("myModel = ", myModel)

    # Some computations ==> call the sub models methods
    instant = 1.0
    frequency = 0.5

    #
    print("covariance matrix at t = ", instant,
          " : ", myModel.computeCovariance(instant))
    print("covariance matrix at t = ", -1.0 * instant,
          " : ", myModel.computeCovariance(-1.0 * instant))
    print("spectral density at f = ", frequency, " : ",
          myModel.computeSpectralDensity(frequency))

    # Discretize the process on a small time grid
    timeGrid = RegularGrid(0.0, 1.0, 11)
    print("discretized covariance over the time grid = ", timeGrid, " is ")
    print(myModel.discretize(timeGrid))

except:
    import sys
    print("t_SecondOrderModel_std.py", sys.exc_info()[0], sys.exc_info()[1])