1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
|
#! /usr/bin/env python
from __future__ import print_function
import openturns as ot
from math import *
# DEFAULT CONSTRUCTOR AND STRING CONVERTER
print('test : default constructor and string converter')
# Default constructor
squareComplexMatrix0 = ot.SquareComplexMatrix()
# String converter
print('squareComplexMatrix0 = ', repr(squareComplexMatrix0))
# CONSTRUCTOR WITH SIZE, OPERATOR() AND STRING CONVERTER
print('test : constructor with size, operator() and string converter')
# Constructor with size
squareComplexMatrix1 = ot.SquareComplexMatrix(2)
# Check operator() methods
squareComplexMatrix1[0, 0] = 1. + 1j
squareComplexMatrix1[0, 1] = 3. + 1j
squareComplexMatrix1[1, 0] = 1.0j
squareComplexMatrix1[1, 1] = 5. + 1.j
# String converter
print('squareComplexMatrix1 = ', repr(squareComplexMatrix1))
# COPY CONSTRUCTOR AND STRING CONVERTER
print('test : copy constructor and string converter')
# Copy constructor
squareComplexMatrix2 = ot.SquareComplexMatrix(squareComplexMatrix1)
# String converter
print('squareComplexMatrix2 = ', repr(squareComplexMatrix2))
# GET DIMENSIONS METHODS
print('test : get dimensions methods')
# Get dimension methods
print('squareComplexMatrix1\'s nbRows = ', squareComplexMatrix1.getNbRows())
print('squareComplexMatrix1\'s nbColumns = ',
squareComplexMatrix1.getNbColumns())
# CONJUGATE METHOD
print('test : conjugate method')
# Check conjugate method
squareComplexMatrix4 = squareComplexMatrix1.conjugate()
print('squareComplexMatrix1 conjugate = ', repr(squareComplexMatrix4))
# ADDITION METHOD
print('test : addition method')
# Check addition method : we check the operator and the symmetry of the
# operator, thus testing the comparison operator
sum1 = squareComplexMatrix1 + squareComplexMatrix4
sum2 = squareComplexMatrix4 + squareComplexMatrix1
print('sum1 = ', repr(sum1))
print('sum2 = ', repr(sum2))
print('sum1 equals sum2 = ', sum1 == sum2)
# SUBSTRACTION METHOD
print('test : substraction method')
# Check substraction method
diff = squareComplexMatrix1 - squareComplexMatrix4
print('diff = ', repr(diff))
# MATRIX MULTIPLICATION METHOD
print('test : matrix multiplication method')
# Check multiplication method
prod = squareComplexMatrix1 * squareComplexMatrix4
print('prod = ', repr(prod))
# MULTIPLICATION WITH A NUMERICAL POINT METHOD
print('test : multiplication with a numerical point method')
# Create the numerical point
pt = ot.NumericalComplexCollection(2)
pt[0] = 1. + 1j
pt[1] = 1j
print('pt = ', repr(pt))
# Check the product method
ptResult = squareComplexMatrix1 * pt
print('ptResult = ', repr(ptResult))
# MULTIPLICATION AND DIVISION BY A NUMERICAL SCALAR METHODS
print('test : multiplication and division by a numerical scalar methods')
# Check the multiplication method
s = 3. + 2j
scalprod = squareComplexMatrix1 * s
print('scalprod = ', repr(scalprod))
# Check the division method
scaldiv1 = squareComplexMatrix1 / s
scaldiv2 = squareComplexMatrix1 / s
print('scaldiv1 = ', repr(scaldiv1))
print('scaldiv2 = ', repr(scaldiv2))
print('scaldiv1 equals scaldiv2 = ', (scaldiv1 == scaldiv2))
# ISEMPTY METHOD
print('test : isEmpty method')
# Check method isEmpty
squareComplexMatrix5 = ot.SquareComplexMatrix()
squareComplexMatrix6 = ot.SquareComplexMatrix()
print('squareComplexMatrix0 is empty = ', squareComplexMatrix0.isEmpty())
print('squareComplexMatrix1 is empty = ', squareComplexMatrix1.isEmpty())
print('squareComplexMatrix5 is empty = ', squareComplexMatrix5.isEmpty())
|